How Does Equation (1) Translate to Equation (2) in Simple Harmonic Motion?

AI Thread Summary
To derive x as a function of time for a simple harmonic oscillator, one starts with Newton's second law and Hooke's law, leading to a second-order differential equation. The solution to this equation typically results in an expression like x(t) = A*cos(ωt + φ). The discussion highlights the confusion in translating this to another form, x(t) = A*sin(ωt + φ), and questions the specific trigonometric laws needed for this transformation. Suggestions include working backwards from the desired equation to clarify the relationship. Understanding the connections between the cosine and sine forms is crucial for mastering simple harmonic motion equations.
Behroz
Messages
5
Reaction score
0
I'm supposed to derive x as a function of time for a simple
harmonic oscillator (ie, a spring). According to my textbook
this is done by using Newton's second law and hooke's law
as this: ma=-kx and one gets a differential equation in
the second order. I can follow the calculations until this
happens: (see attached picture)

(where omega is the frequency)

I do get the equation (1) when I solve the differential
equation myself but I don't understand how equation (1) translates
to (2)?
I assume this must be done by using some trigonometric law?
if so then which one and how??
Thanks
 

Attachments

  • prob.jpg
    prob.jpg
    5.3 KB · Views: 458
Physics news on Phys.org
Spring mass systems often use omega to represent sqrt(k/m). It isn't a trigonometric law, though if your textbook eventually (I can't see the picture so I don't know) represents the motion as x(t) = Acos(wt + ø) then you will need to use trig.
 
Mindscrape said:
Spring mass systems often use omega to represent sqrt(k/m). It isn't a trigonometric law, though if your textbook eventually (I can't see the picture so I don't know) represents the motion as x(t) = Acos(wt + ø) then you will need to use trig.

That's right.. but exactly which trig law do I use and how do I use it to go from equation (1) above in the attached picture to x(t) = Asin(wt + ø).

Or in other words HOW do I go FROM x(t)=x0cos(wt)+(v0/w)sin(wt) ---- (w being = sqrt(k/m) TO x(t) = Asin(wt + ø)
how? HOW? HOW?!??!? HOW?!?
 
That is for you to find out. :p

Try working backwards, it might be a little easier.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top