r4nd0m
- 96
- 1
I'm really stuck with my homework - it seems to be easy, but...
So the first one:
Find the most natural bijection between these two sets:
(X \times Y)^Z , X^Z \times Y^Z
The second thing I'm stuck with:
Proof for arbitrary f: X \rightarrow Y , g: Y \rightarrow Z and sets:
A \subseteq X , B \subseteq Z :
(g \circ f)^{-1} (B) = f^{-1}(g^{-1}(B))
And the last one:
Let f: X \rightarrow Y be an arbitrary function. Proof that for every A,B \subseteq X ; C,D \subseteq Y:
a) C \subseteq D \Rightarrow f^{-1}(C) \subseteq f^{-1}(D)
b) f(f^{-1}(C)) \subseteq C
So the first one:
Find the most natural bijection between these two sets:
(X \times Y)^Z , X^Z \times Y^Z
The second thing I'm stuck with:
Proof for arbitrary f: X \rightarrow Y , g: Y \rightarrow Z and sets:
A \subseteq X , B \subseteq Z :
(g \circ f)^{-1} (B) = f^{-1}(g^{-1}(B))
And the last one:
Let f: X \rightarrow Y be an arbitrary function. Proof that for every A,B \subseteq X ; C,D \subseteq Y:
a) C \subseteq D \Rightarrow f^{-1}(C) \subseteq f^{-1}(D)
b) f(f^{-1}(C)) \subseteq C
Last edited: