How Does Gravity Affect Equations in Vertical SHM Problems?

  • Thread starter Thread starter brendan3eb
  • Start date Start date
  • Tags Tags
    Shm
AI Thread Summary
In vertical simple harmonic motion (SHM) problems involving a mass on a spring, the equation w=(k/m)^(1/2) is valid because the gravitational force is balanced by the spring force at the equilibrium position. The gravitational force (mg) is often neglected in the derivation of SHM equations because it is accounted for when determining the equilibrium point, where the spring force equals the weight. When analyzing maximum amplitude without exceeding a certain acceleration, the equation ma=-kA is used, assuming the system oscillates around the equilibrium position. The discussion highlights the importance of recognizing that the equilibrium point allows for simplifications in the equations of motion. Understanding these principles clarifies how gravity influences vertical SHM without complicating the fundamental equations.
brendan3eb
Messages
53
Reaction score
0
I have been doing quite a few SHM problems, and I just have a few questions in general. A lot of questions evolved from one particular problem type: A mass attached to the end of a vertical spring of spring constant k.

My questions:
1. How can we prove that we can use the equation w=(k/m)^(1/2) for this problem. Normally, you can just go:
ma=-ky
a=-k/m * y
a=-w^2*y
y's cancel out
w=(k/m)^(1/2)
but in this case you should have to account for the mg force, but in most solutions, I do not seem mg accounted for?

In one problem, I was asked to solve for the maximum amplitude the shm could have in order to not surpass a certain acceleration. Once again, all answers were along the lines:
ma=-kA
mg=-kA
A=-mg/k
Once again, how can you neglect the mg force?

My only idea is that since we determine the equilibrium point for most of these problems at the beginning - the point where the spring force matches the gravitational force - that they treat this equilibrium point like the spring's equilibrium point and can somehow, magically, neglect the spring force?
 
Physics news on Phys.org
I have been doing problems for the last two hours, and still haven't really gotten much further on figuring this out..
 
you didn't prove that you could use w=(k/m)^(1/2). you have a second order differential equation y'' = -k/m * y
To solve this just try y = a sin (b *t) as a solution and then find out what a and b are.

if you would include an mg force then your new differential equation would become

y'' = -k/m * y - mg. try to prove that if y=F(t) is a solution of the first differential equation, that y = F(t) - mg/k is a solution of the second one.
 
When the spring is hanging vertically in equilibrium: Tension =Weight i.e ke=mg

When you displace it a small distance,x, Resultant force,F =mg-k(e+x)...use F=ma now.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top