- 3,372
- 465
Homework Statement
Show that the number density for bosons if T (temperature) >>μ (chemical energy) is:
n= \frac{ζ(3)}{\pi^{2}} gT^{3}
(T>>m too)
Homework Equations
n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} f(E) (E^{2}-m^{2})^{1/2} EdE
f(E)= \frac{1}{e^{\frac{E-μ}{T}} -1}
ζ(s)= \frac{1}{Γ(s)} \int_{0}^{∞} dx \frac{x^{s-1}}{e^{x}-1}
The Attempt at a Solution
I am taking:
n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} \frac{1}{e^{\frac{E-μ}{T}} -1} (E^{2}-m^{2})^{1/2} EdE
Then use μ<<T to drop the part of it in the exponential
n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} \frac{1}{e^{\frac{E}{T}} -1} (E^{2}-m^{2})^{1/2} EdE
If now I make a change of variables, x= \frac{E}{T} I think I'll get something similar to the definition of the zeta function... By this I have:
x= \frac{E}{T},
dE= T dx,
E^{2}= x^{2}T^{2}
and E= x T
The integration limits will be: x_{1}= \frac{m}{T}=0 and the upper one will be ∞...
n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} (x^{2}T^{2}-m^{2})^{1/2} xT^{2}dx
Now I can see that dropping m^{2} from the square root would give me the desired answer... However I don't know why can I?
alright m<<T, but T also gets multiplied by the variable...
If I'd drop it:
n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} xT(1-\frac{m^{2}}{x^{2}T^{2}})^{1/2} xT^{2}dx
n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} x^{2} T^{3}dx
n= \frac{g}{2 \pi^{2}} ζ(3) Γ(3) T^{3}dx
Γ(3)= 2
and I get the right result...By the assumption I could drop m^2 from the square root...