I agree about the need to go back to the definition. Some useful things to remember is that
1. Levi-Civita indices must be all different for it to be non-zero.
2. When it us non-zero it can only be one or minus one.
3. Every time you swap two indices around you pick up a minus
Next, you need to go to the definition of the determinant. Wikipedia has some good information on this including the connection to Levi-Civitas
https://en.wikipedia.org/wiki/Determinant.
Start with a simpler task and try writing the sum out:
##\epsilon_{\alpha\beta\gamma\kappa} A^\alpha_1 A^\beta_2 A^\gamma_3 A^\kappa_4 = ?##
Take, for example the first term as ##\{\alpha\beta\gamma\kappa\}=\{1234\}## all other terms will be permutations of this sequence. You can deal with these permutations by choosing what you keep fixed:
-> Fix ##\alpha=1## permute ##\beta\gamma\kappa\}=\{234\}##:
___-> Fix ##\beta=2## permute ##\{\gamma\kappa\}=\{34\}##:
______-> ##\{\alpha\beta\gamma\kappa\}=\{1234\}, -\{1243\}##
__________Note that the second term has a minus because I needed a single exchange of indices compared to 1234
go up few levels
___-> Fix ##\beta=3## permute ##\{\gamma\kappa\}=\{24\}##:
______-> ##\{\alpha\beta\gamma\kappa\}=-\{1324\}, (-)^2\{1342\}##
go up
___-> Fix ##\beta=4## permute ##\{\gamma\kappa\}=\{23\}##:
______-> ##\{\alpha\beta\gamma\kappa\}=\{1423\}, -\{1432\}##
Based on this you already have:
##\epsilon_{\alpha\beta\gamma\kappa} A^\alpha_1 A^\beta_2 A^\gamma_3 A^\kappa_4 = A^1_1 \left(A^2_2 \left(A^3_3 A^4_4 - A^4_3 A^3_4 \right) + A^3_2 \left(-A^2_3 A^4_4 + A^4_3 A^2_4 \right) + A^4_2 \left(A^2_3 A^3_4 - A^3_3 A^2_4 \right) \right) \dots##
You should start seeing the hierarchical structure of the determinant appearing in this permutations (the inner brackets are 2-by-2 determinants, above them is 3-by-3 etc). If you are happy with this (i.e. you can extend the arguments to proof of ##\epsilon_{\alpha\beta\gamma\kappa} A^\alpha_1 A^\beta_2 A^\gamma_3 A^\kappa_4=\det\left(A\right)##), we can move to your original question