How Does o-Notation Affect Operations in Taylor Series Expansions?

  • Thread starter Thread starter transgalactic
  • Start date Start date
transgalactic
Messages
1,386
Reaction score
0
i know that the in the remainder is x^5

but till what power i open the expression??

what happanes when i multiply to expression of o(x^4) in one of them
and o(x^5) in the other

or when we are making a sun of these two expressions
 
Physics news on Phys.org
I some expression f(x) is o(x^n), it means that
\lim_{x\to{0}}\frac{f(x)}{x^{n}}=0
 
Last edited:
i ment in a tailor series
 
what are the laws of making operation with taylor serieses regarding the o(x^n) object
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top