How does one do the following Integral.

  • Thread starter Thread starter Quantumpencil
  • Start date Start date
  • Tags Tags
    Integral
Quantumpencil
Messages
96
Reaction score
0

Homework Statement



The problem is really not bad; It's to find the flux due to a point charge at the center of Cube of side length d. I've gotten the answer I believe using Gauss's law (q/6epsilon)

I tried doing a Flux integral, and the integral seems kind of a pain in the ***... I'm not sure how to do it. I will post where I'm at and hopefully someone can tell me how to integrate this.

the exact question was

"Find the flux through a face of a cube from a point charge at the cube's center"

Homework Equations


The Attempt at a Solution



First I chose the face, assuming the charge is at the origin, such that da=dzdy(x), x = d/2, and y and z vary from -d/2 to d/2. I then changed Coulombs law to Cartesian coordinates and did some dot products, and substituted in d/2 for x.

\int[\frac{Q(d/2)}{(d^2/4)+y^2+z^2)^{3/2}}dydz

How can one integrate this?
 
Last edited:
Physics news on Phys.org
Please write down the question exactly as it was given to you. An electric field can not have dimensions of q/epsilon (a flux can). And please be more clear in your working - write full equations instead of fragments. Right now, one can only guess what you are trying to calculate.
 
Yeah, don't know why I typed Electric field, the problem is to find

\int(E)\cdot da, the flux through the surface.
 
If you already figured out the flux using Gauss' law and symmetry, why do you need to do the painful integral?
 
I mean, I just usually try to work problems multiple ways. If the integral isn't do-able then I suppose I won't, but often times I just don't think of the proper tricks to solve integrals and things, and doing problems that was as well keeps my bank of problem solving knowledge sharper.
 
I'm sure you probably can do it. But I think the lesson learned would be disproportionate to the effect involved. If it's easy both ways, do it both ways. If it MUCH easier one way stick with that one.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top