How Does One Solve the Integral of Logarithmic Functions Over a Unit Interval?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral Logarithm
Click For Summary
SUMMARY

The integral of logarithmic functions over a unit interval, specifically $$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$, requires careful handling of series multiplication. The discussion highlights a critical error in evinda's solution regarding the multiplication of two absolutely convergent power series, which should utilize the Cauchy product rather than the pointwise product. This distinction is essential for accurate computation of the integral.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with integral calculus, specifically definite integrals
  • Knowledge of power series and their convergence
  • Comprehension of the Cauchy product for series multiplication
NEXT STEPS
  • Study the Cauchy product of power series in detail
  • Explore advanced techniques in integral calculus involving logarithmic functions
  • Review examples of series convergence and divergence
  • Investigate other integral problems involving logarithmic expressions
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and series analysis.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
logarithm integral # (2)

Solve the following

$$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$​
 
Last edited:
Physics news on Phys.org
ZaidAlyafey said:
Solve the following

$$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$​

$$\log (1-x)=-\sum_{n=1}^{\infty} \frac{x^n}{n} \text{ for } |x|<1$$

$$\log (1+x)=\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \text{ for } |x|<1$$

So:

$$\frac{\log(1-x)\log(1+x)}{x}=\frac{- \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}}{x}=\frac{\sum_{n=1}^{\infty} (-1)^{n+2} \frac{x^{2n}}{n^2}}{x}=\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$$

Therefore:

$$\int_0^1 \frac{\log(1+x) \log(1-x)}{x} dx=\int_0^1 \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2} dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \left [ \frac{x^{2n}}{2n}\right ]_0^1=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 
Last edited by a moderator:
evinda said:
$$\frac{\log(1-x)\log(1+x)}{x}=\frac{- \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}}{x}=\frac{\sum_{n=1}^{\infty} (-1)^{n+2} \frac{x^{2n}}{n^2}}{x}=\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$$

How did you perform the multiplication of the two series ?
 
In evinda's solution, there is an error made in multiplying the two series. The product of two absolutely convergent power series is given by the Cauchy product, not pointwise product.
 
Euge said:
In evinda's solution, there is an error made in multiplying the two series. The product of two absolutely convergent power series is given by the Cauchy product, not pointwise product.

I see..I am sorry! (Tmi)
 
$$\int^1_0 \frac{\log(1-x)\log(1+x)}{x}\,dx = -\zeta(2)\log(2)+\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx $$

$$\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx = \int^1_0 \sum_k (-x)^k \mathrm{Li}_2(x) = \sum_{k\geq 1} (-1)^{k-1}\int^1_0 x^{k-1} \mathrm{Li}_2(x) $$

Since

$$\int^1_0 x^{k-1}\mathrm{Li}_2(x)\, dx = \sum_{n\geq 1}\frac{1}{n^2(n+k)} =\frac{1}{k}\left(\zeta(2)-\frac{H_k}{k}\right)$$

We've got

$$\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx =\zeta(2)\sum_{k\geq 1} \frac{(-1)^{k-1}}{k}-\sum_{k\geq 1} (-1)^{k-1}\frac{H_k}{k^2} = \frac{1}{24}\left(4 \pi^2 \log(2)-15 \zeta(3)\right)$$

$$\int^1_0 \frac{\log(1-x)\log(1+x)}{x}\,dx = -\zeta(2)\log(2)+\zeta(2)\log(2)- \frac{15}{24} \zeta(3)=\frac{5}{8}\zeta(3)$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K