How Does One Solve the Integral of Logarithmic Functions Over a Unit Interval?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral Logarithm
Click For Summary

Discussion Overview

The discussion revolves around solving the integral $$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$, focusing on the methods of multiplication of series involved in the solution process. The scope includes mathematical reasoning and technical explanation related to series convergence and integration techniques.

Discussion Character

  • Mathematical reasoning, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents the integral to be solved, seeking a solution.
  • Another participant questions the method of multiplication used in a proposed solution, asking for clarification on the series multiplication.
  • A participant points out an error in the multiplication of two series in a previous solution, asserting that the Cauchy product should be used instead of the pointwise product.
  • A later reply acknowledges the error in the previous solution, indicating a recognition of the mistake.

Areas of Agreement / Disagreement

Participants express disagreement regarding the method of series multiplication, with some asserting that an error was made while others are seeking clarification. The discussion remains unresolved regarding the correct approach to solving the integral.

Contextual Notes

Limitations include potential misunderstandings of series convergence and the specific conditions under which the Cauchy product applies. The discussion does not resolve the integral itself or the implications of the identified error.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
logarithm integral # (2)

Solve the following

$$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$​
 
Last edited:
Physics news on Phys.org
ZaidAlyafey said:
Solve the following

$$\int^1_0 \frac{\log(1+x)\log(1-x)}{x}\,dx$$​

$$\log (1-x)=-\sum_{n=1}^{\infty} \frac{x^n}{n} \text{ for } |x|<1$$

$$\log (1+x)=\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \text{ for } |x|<1$$

So:

$$\frac{\log(1-x)\log(1+x)}{x}=\frac{- \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}}{x}=\frac{\sum_{n=1}^{\infty} (-1)^{n+2} \frac{x^{2n}}{n^2}}{x}=\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$$

Therefore:

$$\int_0^1 \frac{\log(1+x) \log(1-x)}{x} dx=\int_0^1 \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2} dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \left [ \frac{x^{2n}}{2n}\right ]_0^1=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 
Last edited by a moderator:
evinda said:
$$\frac{\log(1-x)\log(1+x)}{x}=\frac{- \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}}{x}=\frac{\sum_{n=1}^{\infty} (-1)^{n+2} \frac{x^{2n}}{n^2}}{x}=\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$$

How did you perform the multiplication of the two series ?
 
In evinda's solution, there is an error made in multiplying the two series. The product of two absolutely convergent power series is given by the Cauchy product, not pointwise product.
 
Euge said:
In evinda's solution, there is an error made in multiplying the two series. The product of two absolutely convergent power series is given by the Cauchy product, not pointwise product.

I see..I am sorry! (Tmi)
 
$$\int^1_0 \frac{\log(1-x)\log(1+x)}{x}\,dx = -\zeta(2)\log(2)+\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx $$

$$\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx = \int^1_0 \sum_k (-x)^k \mathrm{Li}_2(x) = \sum_{k\geq 1} (-1)^{k-1}\int^1_0 x^{k-1} \mathrm{Li}_2(x) $$

Since

$$\int^1_0 x^{k-1}\mathrm{Li}_2(x)\, dx = \sum_{n\geq 1}\frac{1}{n^2(n+k)} =\frac{1}{k}\left(\zeta(2)-\frac{H_k}{k}\right)$$

We've got

$$\int^1_0 \frac{\mathrm{Li}_2(x)}{1+x}\,dx =\zeta(2)\sum_{k\geq 1} \frac{(-1)^{k-1}}{k}-\sum_{k\geq 1} (-1)^{k-1}\frac{H_k}{k^2} = \frac{1}{24}\left(4 \pi^2 \log(2)-15 \zeta(3)\right)$$

$$\int^1_0 \frac{\log(1-x)\log(1+x)}{x}\,dx = -\zeta(2)\log(2)+\zeta(2)\log(2)- \frac{15}{24} \zeta(3)=\frac{5}{8}\zeta(3)$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K