unscientific
- 1,728
- 13
Homework Statement
Part (a): By writing L2 in einstein notation, show that p2 can be written as:
Part(b): Show ##\vec{p}.\hat {\vec{r}} - \hat {\vec{r}}.\vec{p} = -2i\hbar\frac{1}{r}##
Part(c): Show ##\vec{r}.\vec{p} = rp_r + i\hbar##
Part (d): Show ##p^2 = p_r^2 + \frac{L}{r^2}##
I missed out terms in part (a), I couldn't get parts (b) and (c) of this question.
Homework Equations
The Attempt at a Solution
Part (a)
L^2 = \epsilon_{ijk}x_j p_k \epsilon_{ilm} x_l p_m
= \epsilon_{ijk}\epsilon{ilm} x_j p_k x_l p_m
= \left(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}\right)x_jp_kx_lp_m
= x_jp_kx_jp_k - x_jp_kx_kp_j
= x_j^2p_k^2 - x_jp_jp_kx_k
= x_j^2p_k^2 - x_jp_j
= r^2p^2 - (\vec{r} . \vec {p})
Part(b)
\vec{p}.\hat {\vec{r}} - \hat {\vec{r}}.\vec{p} = -i\hbar\left(\nabla . (\frac{\vec{r}}{r})\right) + i\hbar\left(\frac{\vec{r}}{r}.\nabla\right)
Now using product rule:
= -i\hbar\left[ \vec{r}.(\nabla \frac{1}{r}) + \frac{1}{r}\nabla . \vec{r}\right] + i\hbar\left[\frac{1}{r} \vec{r}.\nabla\right]
Now, ##\nabla \frac{1}{r} = -\frac{1}{r^3}\vec{r}## and ##\nabla . \vec{r} = 3##. Using these results, we obtain:
= \frac{i\hbar}{r}
Part (c)
Using result of part (b):
\vec{r}.\vec{p} = 2i\hbar + r(\vec{p}.\hat{\vec{r}})
= 2i\hbar + \vec{p}.\vec{r}
= 2i\hbar -i\hbar\nabla . \vec{r}
= 2i\hbar - 3i\hbar
= -i\hbar
Part(d)
Chuck parts (b) and (c) into the equation and you get the answer.
The physical interpretation is:
Total Energy = Radial Kinetic Energy + Rotational Energy
Last edited: