Starwatcher16
- 53
- 0
F_s=-kx=ma, a=\frac{-kx}{m}
We now need to find an equation that satisfies: \frac{d^2x}{d^2t}=\frac{kx}{m}
We get (letting w^2=k/m): x(t)=A*Cos(wt+\phi)
The time it takes for one cycle is:T_1=2 \pi\sqrt{\frac{m}{k}
Now, let's solve for T again using a different method.
F_{ave}=\frac{1}{x}\int{(kx)}dx=\frac{kx}{2}
a_{ave}=\frac{kx}{2m}
So, we get: x_f=x_i+\frac{at^2}{2}--->T^2=\frac{4m}{k}--->T=2\sqrt{\frac{2m}{k}}
We multiply our new T by 4 to get the time over a complete cycle: T_2=4*2\sqrt{\frac{2m}{k}}
T_1/=T_2
? ? ? ? ? ? ? ? ?
We now need to find an equation that satisfies: \frac{d^2x}{d^2t}=\frac{kx}{m}
We get (letting w^2=k/m): x(t)=A*Cos(wt+\phi)
The time it takes for one cycle is:T_1=2 \pi\sqrt{\frac{m}{k}
Now, let's solve for T again using a different method.
F_{ave}=\frac{1}{x}\int{(kx)}dx=\frac{kx}{2}
a_{ave}=\frac{kx}{2m}
So, we get: x_f=x_i+\frac{at^2}{2}--->T^2=\frac{4m}{k}--->T=2\sqrt{\frac{2m}{k}}
We multiply our new T by 4 to get the time over a complete cycle: T_2=4*2\sqrt{\frac{2m}{k}}
T_1/=T_2
? ? ? ? ? ? ? ? ?