How Does the Darwin Term Relate to Commutators in Quantum Mechanics?

Sigma057
Messages
37
Reaction score
1

Homework Statement


I am trying to fill in the steps between equations in the derivation of the coordinate representation of the Darwin term of the Dirac Hamiltonian in the Hydrogen Fine Structure section in Shankar's Principles of Quantum Mechanics.

$$
H_D=\frac{1}{8 m^2 c^2}\left(-2\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left[\overset{\rightharpoonup }{P}\cdot \overset{\rightharpoonup }{P},V\right]\right)

=-\frac{1}{8 m^2 c^2}\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]
$$

Homework Equations


What Shankar calls the "chain rule for commutators of product" I think he means
$$[\text{AB},C]=A[B,C]+[A,C]B$$.

On the same page he mentions the identity
$$
\left[p_x,f (x)\right]=\text{-i$\hbar $}\frac{df}{dx}
$$

The Attempt at a Solution



One way this equality could be satisfied is if
$$\left[\overset{\rightharpoonup }{P}\cdot \overset{\rightharpoonup }{P},V\right]=\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]$$

In component form this means
$$
\left[P_x^2+P_y^2+P_z^2,V\right]=\left(\overset{\wedge }{x}P_x+\overset{\wedge }{y}P_y+\overset{\wedge }{z}P_z\right)\cdot \left[\overset{\wedge }{x}P_x+\overset{\wedge }{y}P_y+\overset{\wedge }{z}P_z,V\right]
$$
$$
=\left(\overset{\wedge }{x}P_x+\overset{\wedge }{y}P_y+\overset{\wedge }{z}P_z\right)\cdot \left(\overset{\wedge }{x}\left[P_x,V\right]+\overset{\wedge }{y}\left[P_y,V\right]+\overset{\wedge }{z}\left[P_z,V\right]\right)
$$

Or
$$
\left[P_x^2,V\right]+\left[P_y^2,V\right]+\left[P_z^2,V\right]=P_x\left[P_x,V\right]+P_y\left[P_y,V\right]+P_z\left[P_z,V\right]
$$

One way this equality could be satisfied is if
$$
\left[P_i^2,V\right]=P_i\left[P_i,V\right]
$$

WLOG let's compute ##\left[P_x^2,V\right]## in the coordinate basis acting on a test function ##\phi(x)##

$$
\left[p_x^2,V\right]\phi =\left(p_x\left[p_x,V\right]+\left[p_x,V\right]p_x\right)\phi =p_x\left[p_x,V\right]\phi +\left[p_x,V\right]p_x\phi
$$

$$
=\text{-i$\hbar $}\frac{d}{dx}(\text{-i$\hbar $}\frac{dV}{dx})\phi+\text{-i$\hbar $}\frac{dV}{dx}(\text{-i$\hbar $}\frac{d}{dx})\phi

=

\text{-$\hbar ^2$}\frac{d}{dx}(\frac{dV}{dx}\phi)\text{-$\hbar ^2$}\frac{dV}{dx}\frac{d\phi}{dx}
$$

$$
=
\text{-$\hbar ^2$}(\frac{d^2V}{dx^2}\phi+\frac{dV}{dx}\frac{d\phi}{dx})

\text{-$\hbar^2$}\frac{dV}{dx}\frac{d\phi}{dx}

=\text{-$\hbar^2$}\frac{d^2V}{dx^2}\phi-2\text{$\hbar^2$}\frac{dV}{dx}\frac{d\phi}{dx}

$$

In comparison

$$

p_x\left[p_x,V\right]\phi = (\text{-i$\hbar$}\frac{d}{dx})(\text{-i$\hbar$}\frac{dV}{dx})\phi

=

\text{-$\hbar^2$}\frac{d}{dx}(\frac{dV}{dx}\phi)

=\text{-$\hbar^2$}(\frac{d^2V}{dx^2}\phi+\frac{dV}{dx}\frac{d\phi}{dx})

=\text{-$\hbar^2$}\frac{d^2V}{dx^2}\phi\text{-$\hbar^2$}\frac{dV}{dx}\frac{d\phi}{dx}

$$
I can't figure out where I've gone wrong.
 
Physics news on Phys.org
Sigma057 said:
$$
H_D=\frac{1}{8 m^2 c^2}\left(-2\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left[\overset{\rightharpoonup }{P}\cdot \overset{\rightharpoonup }{P},V\right]\right)

=-\frac{1}{8 m^2 c^2}\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]
$$
The notation is a bit confusing in the text. On the right side of the above equation, the text actually writes
$$
-\frac{1}{8 m^2 c^2}\left[\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] \right]
$$
I think this is to be interpreted as a double commutator.
$$
\left[\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] \right]

= \overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] - \left[\overset{\rightharpoonup }{P},V\right] \cdot \overset{\rightharpoonup }{P}
$$

The text reads
upload_2017-6-25_17-41-16.png


They should probably have included another comma in the double commutator
$$
\left[\overset{\rightharpoonup }{P}\cdot , \left[\overset{\rightharpoonup }{P},V\right] \right]
$$
 
TSny said:
The notation is a bit confusing in the text. On the right side of the above equation, the text actually writes
$$
-\frac{1}{8 m^2 c^2}\left[\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] \right]
$$
I think this is to be interpreted as a double commutator.
$$
\left[\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] \right]

= \overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right] - \left[\overset{\rightharpoonup }{P},V\right] \cdot \overset{\rightharpoonup }{P}
$$

The text reads
View attachment 206055

They should probably have included another comma in the double commutator
$$
\left[\overset{\rightharpoonup }{P}\cdot , \left[\overset{\rightharpoonup }{P},V\right] \right]
$$

Thank you so much for your reply! Without it I would have probably skipped to the next equality and missed a valuable learning opportunity. I'll post my solution to the problem to assist future readers.

With your clarification I'll rewrite the problem statement as

$$
H_D=\frac{1}{8 m^2 c^2}\left(-2\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left[\overset{\rightharpoonup }{P}\cdot \overset{\rightharpoonup }{P},V\right]\right)

=-\frac{1}{8 m^2 c^2}\left[\overset{\rightharpoonup }{P},\left[\overset{\rightharpoonup }{P},V\right]\right]
$$

Using the convention
$$
\overset{\rightharpoonup }{A} \overset{\rightharpoonup }{B}\equiv \overset{\rightharpoonup }{A}\cdot \overset{\rightharpoonup }{B}
$$

I will also make use of the chain rule for commutators of vector operator products, which follows easily from the chain rule for scalar operator products as a consequence of the definition of the dot product and the linearity of the commutator.

$$
\left[\overset{\rightharpoonup }{A}\cdot \overset{\rightharpoonup }{B},C\right]=\overset{\rightharpoonup }{A}\cdot \left[\overset{\rightharpoonup }{B},C\right]+\left[\overset{\rightharpoonup }{A},C\right]\cdot \overset{\rightharpoonup }{B}
$$

I can now finally fill in the steps between these equations.
$$
H_D=\frac{1}{8 m^2 c^2}\left(-2\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left(\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left[\overset{\rightharpoonup }{P},V\right]\cdot \overset{\rightharpoonup }{P}\right)\right)

=\frac{1}{8 m^2 c^2}\left(-\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]+\left[\overset{\rightharpoonup }{P},V\right]\cdot \overset{\rightharpoonup }{P}\right)=-\frac{1}{8 m^2 c^2}\left(\overset{\rightharpoonup }{P}\cdot \left[\overset{\rightharpoonup }{P},V\right]-\left[\overset{\rightharpoonup }{P},V\right]\cdot \overset{\rightharpoonup }{P}\right)=-\frac{1}{8 m^2 c^2}\left[\overset{\rightharpoonup }{P},\left[\overset{\rightharpoonup }{P},V\right]\right]
$$

Thanks for all your help!
 
Looks good.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top