unique_pavadrin
- 100
- 0
URGENT: Limits
PART A
Let f(x) be a function defined on an open interval containing c, and let L be a real number. Given:
\mathop {\lim }\limits_{x \to a} f\left( x \right) = L
For each real \varepsilon > 0 , there exists a real \delta > 0 such that for all x:
0 < \left| {x - c} \right| < \delta <br /> 0 < \left| {f\left( x \right) - L} \right| < \varepsilon
PART B
Hence, evaluate exactly \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta }2. The attempt at a solution
I do not have the slightest idea on how to solve part A, however for part B my working is as follows (I am using L'hopital's Rule):
<br /> \begin{array}{l}<br /> \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta } = \frac{{\sin ^2 4\left( 0 \right)}}{0} = \frac{0}{0} \\ <br /> \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta } = \mathop {\lim }\limits_{\theta \to 0} \frac{{f\left( \theta \right)}}{{g\left( \theta \right)}}\quad \Rightarrow \quad f\left( \theta \right) = \sin ^2 4\theta \quad g'\left( \theta \right) = 1 \\ <br /> f\left( \theta \right) = \sin ^2 4\theta \\ <br /> \sin ^2 \theta = \frac{{1 - \cos 2\theta }}{2} \\ <br /> f\left( \theta \right)\sin ^2 4\theta = \frac{{1 - \cos 8\theta }}{2} \\ <br /> \end{array}<br />
Am i doing this part correctly? Is there an easier way? Many thanks to all help and suggestions offered.
unique_pavadrin
Homework Statement
PART A
Let f(x) be a function defined on an open interval containing c, and let L be a real number. Given:
\mathop {\lim }\limits_{x \to a} f\left( x \right) = L
For each real \varepsilon > 0 , there exists a real \delta > 0 such that for all x:
0 < \left| {x - c} \right| < \delta <br /> 0 < \left| {f\left( x \right) - L} \right| < \varepsilon
PART B
Hence, evaluate exactly \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta }2. The attempt at a solution
I do not have the slightest idea on how to solve part A, however for part B my working is as follows (I am using L'hopital's Rule):
<br /> \begin{array}{l}<br /> \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta } = \frac{{\sin ^2 4\left( 0 \right)}}{0} = \frac{0}{0} \\ <br /> \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin ^2 4\theta }}{\theta } = \mathop {\lim }\limits_{\theta \to 0} \frac{{f\left( \theta \right)}}{{g\left( \theta \right)}}\quad \Rightarrow \quad f\left( \theta \right) = \sin ^2 4\theta \quad g'\left( \theta \right) = 1 \\ <br /> f\left( \theta \right) = \sin ^2 4\theta \\ <br /> \sin ^2 \theta = \frac{{1 - \cos 2\theta }}{2} \\ <br /> f\left( \theta \right)\sin ^2 4\theta = \frac{{1 - \cos 8\theta }}{2} \\ <br /> \end{array}<br />
Am i doing this part correctly? Is there an easier way? Many thanks to all help and suggestions offered.
unique_pavadrin
Last edited: