How Does the Derivative Change the Multiplicity of a Zero?

  • Thread starter Thread starter ehrenfest
  • Start date Start date
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


How do you show that if f(t) has a zero t_0 of multiplicity n, then f'(t) has a zero at t_0 of multiplicity EXACTLY n -1?

I can prove that the multiplicity is at least n-1 but I am having trouble with the exactly part...


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
if f(t) has a root of multiplicity n, then we can write f(t) = (t - t_0)^n g(t) where g(t_0) != 0. Then f'(t) = (t-t_0)^(n-1)k(t) where k(t) = ng(t) + (t-t_0)g'(t) and k(t_0) = ng(t_0) != 0, so f' has a root of multiplicity n-1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top