How Does the Derivative Term Arise in the Commutator of Electromagnetic Fields?

naima
Gold Member
Messages
936
Reaction score
54
I start from these formulas(transverse electric and magnetic fields)
## E_\perp(r) = \Sigma_i i \mathscr E_{\omega_i}\epsilon_i [\alpha_i e^{i k_i . r}- \alpha^\dagger_i e^{-i k_i . r}]##
and
##B(r) = \Sigma_i i(1/c) \mathscr E_{\omega_i}(\kappa_i \times \epsilon_i) [\alpha_i e^{i k_i . r}- \alpha^\dagger_i e^{-i k_i . r}]##
where epsilon is a unit vector orthogonal to ##\kappa_i = k_i/|k_i|##.
The authors compute their commutator and write it as
##[E_{x \perp}(r),B_y(r')] = -i (\hbar/\epsilon_0) \partial_z \delta(r - r')##

I do not see where this ##\partial_z## comes from.
Have you an idea?

Is it related to FT(f'(z)) = i k FT(f(k))
 
Last edited:
Physics news on Phys.org
I think that the solution is closer.
As ##\mathscr(E)_{\omega_i} = \sqrt{\frac{\hbar \omega_i}{2 \epsilon_0 L}}## and ##h \omega_i = |k_i| c##
I get in the commutator a ##-1/ \epsilon_0## and the ##|k_i|## disappears in ##\kappa_i## and i come closer to a "i z FT(f(z)" term.
Help will be appreciated!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top