How Does the Multiplicity of a Classical Gas Relate to Ideal Gas Conditions?

S_Flaherty
Messages
75
Reaction score
0

Homework Statement


Consider the multiplicity of a classical gas of N non-interacting molecules (not necessarily monatomic). Since they don't interact,their positions are not correlated, so the multiplicity of each will be simply proportional to the volume, with the result that the total multiplicity Ω = VNfN(U), where fN is some function of the total internal energy. Show that this implies the two conditions for an ideal gas.


Homework Equations


Ω(N,n) = N!/[n!(N-n)!]
PV = NkT

The Attempt at a Solution


I'm not really certain how to go about this. Would the two conditions be referring to the ideal gas law PV = NkT = nRT and that a entropy and multiplicity increase?
 
Physics news on Phys.org
Can anyone tell me if I'm on the right track so far?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top