John O' Meara
- 325
- 0
Show that tan^n(x) = tan^{n-2}(x)(sec^2(x)-1) \\. Hence if I_n = \int_0^{\frac{\pi}{4}}tan^n(x)dx \\. Prove that I_n = \frac{1}{n-1} - I_{n-2} \\, and evaluate I_5{/tex]<br />
My effort:<br />
I_n = \int_0^{n-2}tan^{n-2}x(sec^2x-1)dx \\ du = (n-2)tan^{n-3}x sec^2x dx \\, and v = \int(sec^2x - 1) dx = tanx -x \\. Therefore: <br />
I_n = (tan^{n-2}x(tanx - x)) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-3}xsec^2x(tanx - x)dx \\.<br />
Which implies, I_n = (tan^{n-2}x(tanx - x) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-2}sec^2x dx - (n-2)\int tan^{n-3}x(sec^2x -1) dx \\. Therefore that implies :<br />
I_n = (tan^{n-1}x - tan^{n-2}(x) x) -(n-1)\int tan^{n-2}x(sec^2x -1)dx + (n-1)\int xtan^{n-3}x(sec^2x-1)dx \\<br />
<br />
The end result I get is : I_n = 1 - \frac{\pi}{4} - (n-1)I_n + (n-1)\int_0^{\frac{\pi}{4}}tan^{n-2}(x) x dx. I must have gone wrong some where to get this result. Thanks for the help.
Last edited: