How Does Thermal Expansion Affect the Density of Liquids?

AI Thread Summary
Thermal expansion affects the density of liquids, with the relationship expressed as Δρ/ρ = -βΔT for small temperature changes. The discussion highlights a misunderstanding regarding the significance of ΔT in the denominator, where it can be approximated as negligible for small changes. It emphasizes that the derived formula is not valid for large temperature changes, as significant variations would invalidate the first-order approximation. Participants suggest differentiating the fundamental relationship between mass, volume, and density to clarify the derivation. The consensus is that the problem assumes small changes in temperature, which should have been specified in the question.
EEristavi
Messages
108
Reaction score
5
Homework Statement
A liquid has a density ##\rho##.
Show that the fractional change in density for a change in temperature ##\Delta##T is
##\frac {\Delta \rho} {\rho} = -\beta \Delta T##
Relevant Equations
##\Delta V = \beta V \Delta T##
##\Delta V = \beta V \Delta T####\rho _2 = \frac m {V + \Delta V} = \frac { \rho V} {V(1+\beta \Delta T)} = \frac \rho {1+\beta \Delta T}##
##\Delta \rho = \rho _2 - \rho = \frac \rho {1+\beta \Delta T} - \rho = \rho (\frac 1 {1+\beta \Delta T} - 1) = \rho \frac {-\beta \Delta T} {1+\beta \Delta T}##

##\frac {\Delta \rho} {\rho} = \frac {-\beta \Delta T} {1+\beta \Delta T}##

I can't figure out were I make the mistake...
It should be:
##\frac {\Delta \rho} {\rho} = -\beta \Delta T##
 
Physics news on Phys.org
EEristavi said:
Homework Statement: A liquid has a density ##\rho##.
Show that the fractional change in density for a change in temperature ##\Delta##T is
##\frac {\Delta \rho} {\rho} = -\beta \Delta T##
Homework Equations: ##\Delta V = \beta V \Delta T##

##\Delta V = \beta V \Delta T####\rho _2 = \frac m {V + \Delta V} = \frac { \rho V} {V(1+\beta \Delta T)} = \frac \rho {1+\beta \Delta T}##
##\Delta \rho = \rho _2 - \rho = \frac \rho {1+\beta \Delta T} - \rho = \rho (\frac 1 {1+\beta \Delta T} - 1) = \rho \frac {-\beta \Delta T} {1+\beta \Delta T}##

##\frac {\Delta \rho} {\rho} = \frac {-\beta \Delta T} {1+\beta \Delta T}##

I can't figure out were I make the mistake...
It should be:
##\frac {\Delta \rho} {\rho} = -\beta \Delta T##
There is no mistake, you just need to take the first order approximation.
The ΔT in the denominator is insignificant compared with the 1 in the denominator.
 
  • Like
Likes EEristavi
haruspex said:
There is no mistake, you just need to take the first order approximation.
The ΔT in the denominator is insignificant compared with the 1 in the denominator.

##\Delta T## or ##\beta? ##
Because as I think ##\Delta T## Can me "big"

Also,
Can you give me some direction: where I can look it up - Why I can discard that value in denominator?
I know I will find it eventually, but I would appreciate it if you could help me spare some time

P.S. I kind of tried to expand this as a Tailor (maclaurin) Series, but was't satisfied with the answer..
 
EEristavi said:
Because as I think ΔT Can me "big"
It can be, but the expression you are asked to derive for change in density is not valid for large changes in temperature.
E.g. consider a temperature gain so great that the volume doubles. βΔT=1. What does that give for the new density, according to the target formula?
 
Last edited:
  • Like
Likes TSny and DEvens
I think an easy approach is to simply differentiate the fundamental relationship between volume, mass and density.

##m = \rho V\tag{1} \rightarrow V = m \rho^{-1}##

If we differentiate this for a unit of mass:

##dV = -m\rho^{-2} d \rho \tag{2}##

Now simply plug (1) and (2) into the relation

##d V = \beta V d T \tag{3}##

Your desired equation immediately results.
 
  • Like
Likes EEristavi
haruspex said:
What does that give for the new density, according to the target formula?

It would be impossible to use first order approximation - so answer will be "my formula"?
 
EEristavi said:
It would be impossible to use first order approximation - so answer will be "my formula"?
The question should have specified that βΔT is small. You are expected to use the first order approximation.
 
Thanks all
 
Back
Top