How does it work? First, customized loudspeakers are attached to cylindrical chambers filled with inert, pressurized gases such as xenon and helium. At the opposite end of the tubes are tightly wound "jelly rolls" made of plastic film glued to ordinary fishing line. When the loudspeakers blast sound at 180 decibels, an acoustic wave resonates in the chambers. As gas molecules begin dancing frantically in response to the sound, they are compressed and heated, with temperatures reaching a peak at the thickest point of the acoustic wave. That's where the superhot gas molecules crash into the plastic rolls. After transferring their heat to the stack, the sound wave causes the molecules to expand and cool. "Each one of these oscillating molecules acts as a member of a 'bucket brigade,' carrying heat toward the source of the sound," says Garrett. Cold temperatures can then be tapped for chilling refrigerators, bedrooms, cars, or electronic components on satellites and inside computers, according to Garrett. Someday, he says, turning up the air-conditioner could be accomplished by adjusting a volume-control knob.