How Does Wien's Law Relate to Total Emissive Power and Maximum Wavelength?

  • Thread starter Thread starter RedMech
  • Start date Start date
  • Tags Tags
    Law Power
AI Thread Summary
The discussion focuses on applying Wien's law to derive the total emissive power and maximum wavelength. Participants explore integrating Wien's equation, specifically ρ(λ,T)=f(λ,T)/λ^5, to demonstrate that total emissive power follows the Stefan-Boltzmann law, R = aT^4. They also discuss how to find the maximum wavelength using Wien's displacement law, λ*T = b. A key challenge is integrating the function without knowing the specific form of f(λ,T), leading to suggestions for substitutions to simplify the integral. Ultimately, one participant successfully resolves the problem using insights from the discussion.
RedMech
Messages
13
Reaction score
0
1. The problem statement:

Using Wien's law ρ(λ,T)=f(λ,T)/λ^5, show the following:

(a) The total emissive power is given by R = aT4 (the Stefan-Boltzmann law),
where a is a constant.
(b) The wavelength λmax at which ρ(λ,T) - or R(λ,T) - has its maximum is such that λ*T = b (Wien's displacement law), where b is a constant.

2. Homework Equations :

Wien's radiation law:
ρ(λ,T)=f(λ,T)/λ^5
ρ(λ,T)=c1/(λ^5*exp{c2/λT})

3. The Attempt at a Solution :

So I tried integrating Wien's equation from zero to infinity
ρ(total)dλ=c/4∫ρ(λ,T)dλ=c/4∫[f(λ,T)/λ^5]dλ. But I got nowhere.

Then I used the full expression of wien's law and tried the integration again
ρ(total)dλ=c/4∫[c1/(λ^5*exp{c2/λT})]dλ
I still didn't know what to do. So please help.
 
Last edited:
Physics news on Phys.org


RedMech said:
1. The problem statement:

Using Wien's law ρ(λ,T)=f(λ,T)/λ^5, show the following:

(a) The total emissive power is given by R = aT4 (the Stefan-Boltzmann law),
where a is a constant.
(b) The wavelength λmax at which ρ(λ,T) - or R(λ,T) - has its maximum is such that λ*T = b (Wien's displacement law), where b is a constant.

2. Homework Equations :

Wien's radiation law:
ρ(λ,T)=f(λ,T)/λ^5
ρ(λ,T)=c1/(λ^5*exp{c2/λT})

3. The Attempt at a Solution :

So I tried integrating Wien's equation from zero to infinity
ρ(total)dλ=c/4∫ρ(λ,T)dλ=c/4∫[f(λ,T)/λ^5]dλ. But I got nowhere.
Without an explicit form for f(λ,T), you can't integrate this, as you probably realized.

Then I used the full expression of wien's law and tried the integration again
ρ(total)dλ=c/4∫[c1/(λ^5*exp{c2/λT})]dλ
I still didn't know what to do. So please help.
This approach should work. How did you try to integrate this? I'd try a substitution like u=1/λ and see where it goes.
 


vela said:
This approach should work. How did you try to integrate this? I'd try a substitution like u=1/λ and see where it goes.

I substituted x=c2/λT for the sake of the exponential term.
dx=[-c2/λ^2T]dλ. The integral has become w=(c1*c*T^4)/4c2^4∫[x^3/e^x]dx (Please note that for c1 and c2, the 1 and 2 are subscripts of c. The independent c is the speed of light)

How is this equation looking?
 
Last edited:


Do you recognize that integral? Think gamma function. In any case, it's a definite integral, so it's just some number.
 


vela said:
Do you recognize that integral? Think gamma function. In any case, it's a definite integral, so it's just some number.

I'll compute the integral and then leave the final expression for my instructor. Thanks a million for your help.
 


RedMech said:
1. The problem statement:

Using Wien's law ρ(λ,T)=f(λ,T)/λ^5, show the following:

(a) The total emissive power is given by R = aT4 (the Stefan-Boltzmann law),
where a is a constant.
...

I tried integrating Wien's equation from zero to infinity
ρ(total)dλ=c/4∫ρ(λ,T)dλ=c/4∫[f(λ,T)/λ^5]dλ. But I got nowhere.

Wien's law is actually ρ(λ,T)=f(λT)/λ5 where f is an undetermined function of the product of λ and T. Using this, see if you can get the integral to yield a constant times T4.
 


TSny said:
Wien's law is actually ρ(λ,T)=f(λT)/λ5 where f is an undetermined function of the . Using this, see if you can get the integral to yield a constant times T4.

@TSny, I was wondering if you might be able to give me a small hint in regards to how to proceed with this problem only using the ρ(λ,T)=f(λT)/λ5 form of Wien's law. I tried integration by parts but that just led to a more convoluted expression. I see that you underlined the phrase "product of λ and T" but I'm still not sure how to handle the f(λT) term in the integral.
 


That calls for a substitution (change of variable) which would throw out of the integral exactly T to the power of 4.
 


dextercioby said:
That calls for a substitution (change of variable) which would throw out of the integral exactly T to the power of 4.

Thank you dextercioby, my mistake was in assuming that I need to find the unknown function f(λT). I was able to figure out the answer based on your hint.
 
Back
Top