Bipolarity
- 773
- 2
How dones one "flip" the graph of a parametric curve?
Define the parametric curve C by
x = f(t) and y = g(t).
This curve can be plotted on the Cartesian plane. Let's say we "flipped" this curve over the x-axis, that is, we reflected every point on this curve about the x-axis so that the y-value for any given point has been negated.
How is the end result represented using the parametric equations shown above, assuming this is possible?
I would imagine just x = f(t) and y = -g(t) ?
And I assume similarly that a flip of the initial curve over the y-axis results in
x = - f(t) and y = g(t)
BiP
Define the parametric curve C by
x = f(t) and y = g(t).
This curve can be plotted on the Cartesian plane. Let's say we "flipped" this curve over the x-axis, that is, we reflected every point on this curve about the x-axis so that the y-value for any given point has been negated.
How is the end result represented using the parametric equations shown above, assuming this is possible?
I would imagine just x = f(t) and y = -g(t) ?
And I assume similarly that a flip of the initial curve over the y-axis results in
x = - f(t) and y = g(t)
BiP