How far will the ship travel after the engine stops?

AI Thread Summary
A ship with an engine power of 85 MW and a mass of 5.3×10^6 kg travels at a top speed of 11 m/s, with frictional force proportional to its speed. The discussion focuses on determining how far the ship will travel after the engine stops, using energy equations and the relationship between force and speed. The frictional force is expressed as F = kv, where k is a constant derived from the maximum speed and power. The calculations lead to a differential equation to solve for the distance traveled after the engine ceases operation. The conversation emphasizes the need to equate energy and work done by friction to find the solution.
Kara386
Messages
204
Reaction score
2

Homework Statement


A ship's engine supplies power of 85MW, which propels the ship of mass 5.3×106 kg across the sea at its top speed of 11##ms^{−1}##. The frictional force exerted on the ship by the sea is directly proportional to its speed. If it starts at top speed and then travels in a straight line, how far will it go after the engines stop?

Homework Equations

The Attempt at a Solution


I thought the ship would start of with energy ##\frac{1}{2}mv^2##, and that the work done by friction has to equal this amount for the ship to stop. It says friction is proportional to speed and from dimensional analysis I need units of kgm##s^{-2}##, mass and time also have to be included in the equation for friction, and it has to be inversely proportional to time so that ##F = \frac{mv}{t}## and work done ##= \int F dx = \frac{mvx}{t}##. There should probably also be some kind of constant of proportionality in there.

Equating the two energy equations gives me ##x = \frac{vt}{2}## but I don't know t, so that's no good. And I don't know what else to try. Thanks for any help!
 
Physics news on Phys.org
You have two expressions for the energy per second: one from the 85 MW and one from F ds.
You know F = 0 if v = 0 and that F(v) is linear. So you can find F as a function of v
 
  • Like
Likes Kara386
Kara386 said:
mass and time also have to be included in the equation for friction,
No, it just says that the constant of proportionality has dimension mass/time. This need not have anything to do with the mass of the ship nor the time since the engines stopped. F=kv for some constant k.
How can you also relate F and v via acceleration?
 
  • Like
Likes Kara386
haruspex said:
No, it just says that the constant of proportionality has dimension mass/time. This need not have anything to do with the mass of the ship nor the time since the engines stopped. F=kv for some constant k.
How can you also relate F and v via acceleration?
Oops. Ok so it's a case of F = kv maybe plus some constant c, except as BvU says for F=0 v=0 so then there can't be a ##c##. Then I think I can use P = Fv to find out the force of friction, so ##85MW = F \times 11##m##s^{-1}## meaning when the boat travels at max speed ##F = 7.7\times 10^6##, and from that ##k=7\times 10^5##. Then it's a differential equation. Thanks! :)
 
Didn't want to give it away too much ..., but yes
 
  • Like
Likes Kara386
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top