Ockonal
- 30
- 0
Some point moves in a circle with V = const; V = 50 m/s. Speed vector changes it's direction 30⁰ per 2 seconds. Find central acceleration.
<br /> \omega = \frac{\varphi }{t}<br />
<br /> \omega = \frac{30}{2} = 15 (\frac{rad}{sec}) <br />
<br /> \upsilon = \omega * R<br />
<br /> 50 = 15 * R; R = 3.33 (m)<br />
<br /> a = \frac{\upsilon^2}{R}<br />
<br /> a = \frac{50^2}{3.33} = 751 (m/s^2)<br />
I'm not sure it's right.
<br /> \omega = \frac{\varphi }{t}<br />
<br /> \omega = \frac{30}{2} = 15 (\frac{rad}{sec}) <br />
<br /> \upsilon = \omega * R<br />
<br /> 50 = 15 * R; R = 3.33 (m)<br />
<br /> a = \frac{\upsilon^2}{R}<br />
<br /> a = \frac{50^2}{3.33} = 751 (m/s^2)<br />
I'm not sure it's right.