How is Circularly polarized light changed upon refraction?

AI Thread Summary
When circularly polarized light refracts at a surface, its handedness can change, particularly when incident at angles less than the Brewster angle, where it remains circular. At normal incidence, the transmitted wave retains its circular polarization due to equal amplitude coefficients for both polarization states. However, at general incidence, the transmitted wave typically becomes elliptically polarized due to the differing amplitude coefficients. The Fresnel equations indicate that the transmitted wave's behavior differs from the reflected wave, which can experience flipping. Understanding these principles clarifies the behavior of polarized light during refraction.
Latempe
Messages
6
Reaction score
0
I have a pretty good understanding that when polarized light is incident on a surface it will change handedness (Right handed polarization, to left handed polarization for example) and remains will remain circular if it is incident at an angle less than the Brewster angle, otherwise it will retain its handedness but become elliptically polarized.

But what happens to the transmitted wave? How does it's handedness change? Can it ever remain circular? What happens at normal incidence?
 
Science news on Phys.org
Recall that in the Fresnel equations the numerators for the transmitted wave amplitude coefficients are always positive values, unlike the reflected amplitude coefficients. That means you don't get flipping, like with the reflected wave. The transmitted wave remains circular at normal incidence, since ##t_{\parallel}|_{\theta_{i} = 0} = t_{\perp} | _{\theta _ {i} = 0 } = \frac{2n_{i}}{n_{i}+n_{t}}##. At general incidence, ##\frac{t_{\perp}}{t_{\parallel}} = \frac{n_{i} \cos \theta_{t} + n_{t} \cos \theta_{i}}{n_{i} \cos \theta_{i} + n_{t} \cos \theta_{t}}##, so you should get some kind of elliptical polarization state in general.
 
  • Like
Likes Latempe
Ah thank you! This helps my understanding a lot!
 
Thread 'Simple math model for a Particle Image Velocimetry system'
Hello togehter, I am new to this forum and hope this post followed all the guidelines here (I tried to summarized my issue as clean as possible, two pictures are attached). I would appreciate every help: I am doing research on a Particle Image Velocimetry (PIV) system. For this I want to set a simple math model for the system. I hope you can help me out. Regarding this I have 2 main Questions. 1. I am trying to find a math model which is describing what is happening in a simple Particle...
I would like to use a pentaprism with some amount of magnification. The pentaprism will be used to reflect a real image at 90 degrees angle but I also want the reflected image to appear larger. The distance between the prism and the real image is about 70cm. The pentaprism has two reflecting sides (surfaces) with mirrored coating and two refracting sides. I understand that one of the four sides needs to be curved (spherical curvature) to achieve the magnification effect. But which of the...
Back
Top