How is entropy defined by boundary area in Holographic Principle?

skeleton
Messages
85
Reaction score
1
Reference: http://en.wikipedia.org/wiki/Holographic_Principle

The principle states that the description of a volume of space should be thought of as encoded on a boundary to the region, preferably a light-like boundary like a gravitational horizon. For a black hole, the principle states that the description of all the objects which will ever fall in is entirely contained in surface fluctuations of the event horizon.

Leonard Susskind, in his book "The Black Hole War", reflects on quantum gravity whereby the total amount of information (bits) that can be stored within a spactial volume is no more than that which can reside on its spatial boundary. This would be calculated in terms of plank length.

Surface area of box, A = 2*(L.l*L.w + L.w*L.h + L.l*L.h))
Internal volume of box, V = L.l*L.w*L.h

In Euclidean space, V>A except for L.l, L.w, L.h < 6 and other trivial proportions.

Can anyone illustrate (or direct me to) the mathematics that validates the Holographic Principle?
 
Physics news on Phys.org
Still curious ... Bump.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top