JDoolin said:
When I multiply 1 mile per hour times 13.7 billion years, your reaction is that "If that made any sense, smart people would have figured it out." But where? Where do I find that.
A well stocked research library should have the answer to that. The internet helps, but the trouble here is that a lot of this stuff comes from "pre-internet" age when you actually have to go through the world of dead trees.
If you want to find out the reason "so why don't people believe X" you usually have to do some digging. The problem is that there are *so many* rejected theories, that to find out why a theory was rejected, you have to do quite a bit of digging.
There are people who get Ph.D.'s in science history looking over this sort of thing. Since you only have eight years to do a Ph.D., most people in looking over failed theories don't spend that much time investigating *why* they failed.
I'd like to have that discussion, because I think it is fundamental to the premise behind General Relativity, but it really doesn't make any sense at all.
There is a ton of evidence behind GR, so if you have some logic that leads to you conclude that GR is wrong, then it's much more likely that there is something wrong with that logic than with GR.
Also, another thing I've noticed about all books on General Relativity is that they tend to skip over the idea of a kinematically expanding universe without mentioning it. Instead, they begin with the assumption of a commoving set of matter. I've also noticed that whenever I bring this up in discussions, I find myself in exactly the same arguments.
Because that's what fits what we see. You have about five hundred pages to write a textbook, and most people are interested in models that match observations. If you want to start mentioning "failed theories" that's enough material to fill another ten textbooks. And it's sort of pointless since once you understand the "standard model" you can figure out for yourself why the other models have problems.
I am willing to acknowledge the possibility that I'm wrong. I've made some terrific blunders over the years, and some of them have been quite embarrassing.
You can avoid being wrong, by not making assertions, and by saying "I don't know". One thing that I don't quite understand is why you seem fixated on the correctness of the Milne model. You can get the same sort of answers by asking "so what is wrong with the Milne model that people don't use it?"
The problem is you seem to be assuming that people don't have very good reasons for rejecting Milne.
But when I talk to people who understand the central argument behind General Relativity, I find that they are utterly unable to convey that understanding to me, and almost always resort to saying "If you were right, don't you think that someone would have noticed by now?" or "I don't have time to explain basic calculus to you right now." or "If your theory is right, show me the data." But in the meantime, no one has ever offered me a look at the data. Nobody has ever offered me a derivation of the Einstein Field Equations. Nobody has ever offered to explain basic calculus to me. I am naturally agnostic. All those things might exist. But in ten years of looking, I have not found it.
1) That's because people are busy and they have better things to do.
2) Also what you are looking for may not exist. If you are looking for a philosophical justification for GR, then that just doesn't exist. People believe that GR works because it is consistent with enough experiments so we are pretty sure that the true theory of gravity is something like GR.
There are a lot of papers online about the experiment tests in support of GR. I'm pretty sure that you can find them in Annual Reviews of Astronomy and Astrophysics and that you can find them for yourself if you have access to a university research library.
3) The other thing is that people don't know these sorts of things off the top of their heads. If you want me to tell you what the experimental constraints of GR are then I would have to spend several hours/days researching GR.
On the other hand, you just gave me a paper that said that Milne's model was only off by a factor of 2 sigma. In my own opinion, this kind of result SCREAMS that you need to go back and give the Milne Model another chance.
It's 2 sigma today. It will be five sigma tomorrow. These are the results of supernova observations and as time passes the observational constraints get tighter, and tightening observations is something that lots of people are working on.
If people take more data and it looks like that points are moving toward the Milne zero line, then yes people will take a look at things. If you look at the papers in arxiv.org, there *was* some interest in Milne way back when the data was more noisy than it is now, but it's moving the wrong way.
And the problem with that graph is that it gets chopped off at low z. If you look at the trend line once you get past the "interesting" part, it goes into massive deceleration.
Yes, I'd be very interested in seeing the data involved in that paper, because I strongly suspect that the reason for it being off by 2 sigma is because they SPECIFICALLY SAID in the paper they were not accounting for any secondary acceleration.
There are references in that paper, and you can use google.
However, lack of secondary acceleration is not going to help you much. You look at the data, and there is a pretty clear trend. If it was noisy, then you'd have random scatter across zero.
There are also statistical tests that you can do (KS test) to test fitness to a particular model. The two sigma figure is two sigma against any deceleration. If you try to do a statistical test to a specific model (zero acceleration), I think you'll get a much high rejection.
And that's supernova data. Once you get past that, then you have WMAP CMB results.
Do I think that it is possible that I figured out something that none of these other guys figured out? Yes.
Honestly... No...
If you look at the original data, people are *very* careful at data reduction. When the original results came out some colleagues spend a few weeks trying to crush the results, and we couldn't. This wasn't a surprise. The groups involved were very careful and they had people try to crush the results before they published.
Do I regard that as highly unlikely? Somewhat. But not any more unlikely than getting struck by lightning, or winning a lottery.
False analogy. Since this isn't a matter of luck.
You are talking about beating a chess master without any training in chess or beating a heavy weight fighter without having any boxing training.
The *only* reason you think that you have a chance is because you haven't even *read* any of the original papers.
That's why I'm telling you to "put up or shut up." If you read the original papers and you can think of something that they haven't thought of, then we can talk. Otherwise, there really is nothing to discuss.
Getting a chance to sit and think for 8 to 12 hours a day for many months. Most people only get the opportunity to think about this stuff for one semester, and their grade and their career is on the line.) It's possible that it's wrong, and it's possible that it's right.
Look. The people that do this for a living spend *years* thinking about this stuff. Now sometimes, people look at the data for too long, so they need an outside perspective, but people get that. If you have say a biostatistician look at the papers and they conclude that the statistics are bogus, that's cool and useful.
But I think what you're not understanding here is that what I have in mind is not an experimentally based theory.
I think I understand quite well.
If it's not experimental, then it's not physics, and if it's pure math, then you need to be talking to someone other than me since I'm not that interested in pure math.
Yes, it is extremely surprising to me that in 10 years I have not found anyone "in charge" that seems to take this seriously, and can only find Milne and Epstein. But that's all I've found. Nobody is seriously taking Milne as a real theoretical model. Instead, they are treating it as a null hypothesis, which they can reject using purely statistical methods.
No physicist takes it seriously because *IT DOESN'T MATCH OBSERVATIONS*. Milne says there was no big bang. We see a big bang. Milne is wrong. Life goes on.
Obviously Milne had a few misconceptions here and there, but whereas the "standard model" is allowed to evolve as new data appears, people reject the Milne model based on an unrealistically strict interpretation (that there wouldn't be secondary acceleration) or unrealistically strict misinterpretation (that Milne thought there should be stars going out forever in all directions, that Milne derived an empty universe)
That's because the "standard model" isn't a specific model. The "standard model" is a phrase for "whatever model is fits the data right now." If it turns out that the data supports Milne, then the Milne model will become the "standard model." If you look at the standard model-2012 it is *VERY* different than standard model-1992. Standard model-1992 is *very clearly* WRONG. You reject old models, name the flavor of the day, the standard model, and life goes on. The king is dead, long live the king.
Think of it like Windows. Windows 8 is different from Windows 95.
When people talk about the Milne model, they are talking about a *specific* model and in that situation the rules are that you specify it strictly.
As far as looking at the data, I've tried that before, but I would need some serious one-on-one help in getting a hold of the right data to look at, and organizing it in the format that I need, and I would need the time and resources to do it.
Science is hard. Also, if you are trying to "prove the Milne model correct" then no one is going to help you. In order to get anyone to help you, you have to set things up so that you get something useful out if (surprise, surprise), Milne is wrong.
So suppose Milne is wrong, what's your backup?
I am fully aware of the great number of educated guesses are made in assigning the redshift-luminosity distances to various objects in the universe. I'm not sure of how many of those educated guesses are made AFTER applying the assumptions of the FLRW metric.
You can go to the original papers. I can't see where they made *any* assumptions that FLRW is correct. Redshift you read from the spectra. Luminosity distance you get from the brightness.
In order to convince me that I'm wrong about this, I would need to understand precisely what the data you are using actually says. I don't really have the background to do what you want me to do, and in the next twenty years, I might find time to learn it all and get it all done, and show beyond a shadow of any doubt, either that Milne was right, or Milne was wrong.
And with all of that effort, you could have actually done something more useful. You need to explain to my why you are so fixated with Milne. With 20 years of effort you *might* convince yourself what everyone else has been convinced of for the last fifty years.
Or you might actually discovery something new with galaxy formation, or exoplanets.
And then there is just waiting of new data to come in. If you think that there is a deep flaw in the way that supernova data is being processed, then you can just wait for someone to trip over that flaw. In the mean time, you could get something useful done with things that people really think are holes.
It's either Milne's mistake, or Einstein's mistake. I want people to acknowledge that this is an actual disagreement between the two. If people just say Milne was modeling "empty space" then it just covers up the fact that he genuinely disagreed with Einstein, and he genuinely disagreed with Eddington.
In that case you can do research in science history. I'm more interested in science history than most people, but frankly, I don't see much point in figuring out who was "right". If it turns out that people are using the "Milne model" to mean something that Milne himself would have found bizarre or even objectionable, that's an interesting historical footnote, but it's not terribly important for the things that I'm interested in.
With Copernicus and Ptolemy, you have Galileo coming along and pointing out "Hey, these two ideas are different. Only one of them can be correct. Which one is right?" With Milne and Eddington, I'm just saying "Hey, these two ideas are different. Only one of them can be correct. Which one is right?"
Or maybe they are both wrong (i.e. Copernicus thought that planets travel in circles, they don't). Or maybe they both figured out pieces of the puzzle.
It's interesting science history, but honestly, I don't see the relevance to science.
I'm pretty well convinced that Milne was right and Eddington was wrong.
And I don't understand the basis for that belief.
What I'm looking for is for someone to acknowledge that Milne's model is not empty.
And you can look for someone to tell you that up is down, and black is white.
Whether Milne himself believed that his model requires an empty universe is an interesting historical footnote, but if he thought that he could have an non-empty universe that wasn't decelerating. Well, he was just wrong. If you have any sort of gravitational model that resembles Newtonian gravity, then this just will not work, and if Milne thought it would, then he was wrong.
Large numbers of people have been working in good faith, trying to put the data into the Standard model for 70 years, and during that time, they have played with a large number of parameters to get the data to fit.
And when the data doesn't find, then change the model, and call whatever the new model is the "standard model." If we observed zero deceleration, then the Milne model would be the standard model. If it turned out that the CMB was from distant stellar sources than steady state would be the standard model. If the skies light up, and we see "The Universe is 6000 year old, signed GOD" then the book of Genesis would be the standard model.
I see no evidence of anyone doing the same with Milne's model. The general attitude is "We don't need to. It's wrong." And there are lots of reasons given to claim that Milne's model is wrong. But I don't need LOTS of reasons to claim Milne's model is wrong. I need just one. One convincing argument would outweigh any number of unconvincing arguments.
I've been giving them to you.
Yes, unfortunately, this question has been a main motivator of the last ten years of my life, during which time, I got two MS degrees, one in physics, and one in math, during which time I could find no one who agreed with me, or was willing to discuss this with me.
You can get more people to discuss things if it looks like you are asking a question.
What I haven't seen is any argument to show that I'm wrong, or that Milne was wrong. All I've seen are straw-men, appeals to consensus, appeals to "data" in general, but never to any specific data, and criticisms of me and/or Milne.
Sigh.
All I've been doing here is giving you arguments. You are free to reject those arguments, but if you *ignore* those arguments then people will just give up talking with you. I posted a link to the supernova results. If you take a look at them and say "well maybe Milne was wrong" then we might be getting somewhere. If you take a look at them and say "MILNE IS GOD AND CAN'T BE WRONG" then I might as well be arguing with young Earth creationists.
Also, you can't expect people to help you. One thing that you have to learn if you want to be a productive physicist is to be your own worst critic. If you start out with "MILNE IS WRONG, CONVINCE ME OTHERWISE" then you are going to get nowhere. You have to start trying to prove yourself wrong. If you lack the ability to convince yourself that you are wrong, then people have better things to do than to talk with you.
The other thing is that I think you are wasting your own time. In all of the time you spent on defending Milne, you could have done some productive work in something else.
There is an exciting wonderful world out there that you are not seeing. I have only the vaguest idea of what "Standard Model Version 2020" will look like, but it's going to have a lot of cool features and fix a lot of bugs that are in "Standard Model Version 2012". There are going to be surprises, and there is lots of interesting work to be done. Even "Standard Model 2013" is likely to have cool new features and bug fixes. (Standard Model 2013 Now with Higgs fields!)
So that's exciting, but the sad thing is that by digging yourself in a hole, you aren't seeing any of this. "Standard Model 2012" is missing a model of galaxy formation, it produces crap numbers when things go non-linear, and there are a lot of bugs with it. Given all of this exciting stuff, why should I chain myself to this argument that should have been resolved fifty years ago.