How Is the Arctan Derived in Relativistic Coulomb Scattering?

Trickster2004
Messages
1
Reaction score
0
Hi. Landau and Lifgarbages give an equation describing the angle of deflection of a charged particle of a given initial velocity and impact parameter. It's given on page 102 of their Classical Theory of Fields, available here: http://books.google.com/books?id=QI...X&oi=book_result&ct=result&resnum=5#PPA102,M1. It's in the solution to Problem 1, at the bottom of the page.

I'm just curious where the equation in Problem 1 came from, in particular where the arctan came from. It's simple to solve 39.4 for the angle letting r-->infinity, but that gives an arccos, not an arctan. L-L just state that as the answer without working through it, as if it's obvious. Does anyone see how to derive it?

Thanks!
 
Physics news on Phys.org
If you have an equation of the form \cos\theta=\frac{a}{b}, then you can think of a being the adjacent side of a right triangle, b being the hypotenuse and hence \sqrt{b^2-a^2} as the opposite side \implies \tan\theta=\frac{\sqrt{b^2-a^2}}{a}
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top