How Is the Center of Mass Calculated for an Astroid?

skrat
Messages
740
Reaction score
8

Homework Statement


Find the center of mass of Astroid ##x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} ## for ##x,y\geq 0## and ##a>0##.

Homework Equations



##x_T=\frac{\int x\left | \dot{\vec{r}}(t) \right |}{\int \left | \dot{\vec{r}}(t) \right |}##

The Attempt at a Solution



##x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}##

##(\frac{x}{a})^{\frac{2}{3}}+(\frac{y}{a})^{\frac{2}{3}}=1##

Now is it ok to say that ##\frac{x}{a}=\cos^3t## and ##\frac{y}{a}=\sin^3t## for ##t\in \left [ 0,\frac{\pi }{2} \right ]##?

Now ##\left | \dot{\vec{r}}(t) \right |=3a \sint \cost##.

Than ##x_T=\frac{\int x\left | \dot{\vec{r}}(t) \right |}{\int \left | \dot{\vec{r}}(t) \right |}## can be written as

##x_T=\frac{\int_{0}^{\frac{\pi }{2}} 3a^2\cos^4t\sint}{\int_{0}^{\frac{\pi }{2}} 3a\cost\sint}=\frac{2}{5}a##

or... is that parameterization wrong?
 
Physics news on Phys.org
skrat said:

Homework Statement


Find the center of mass of Astroid ##x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} ## for ##x,y\geq 0## and ##a>0##.


Homework Equations



##x_T=\frac{\int x\left | \dot{\vec{r}}(t) \right |}{\int \left | \dot{\vec{r}}(t) \right |}##

The Attempt at a Solution



##x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}##

##(\frac{x}{a})^{\frac{2}{3}}+(\frac{y}{a})^{\frac{2}{3}}=1##

Now is it ok to say that ##\frac{x}{a}=\cos^3t## and ##\frac{y}{a}=\sin^3t## for ##t\in \left [ 0,\frac{\pi }{2} \right ]##?

Now ##\left | \dot{\vec{r}}(t) \right |=3a \sint \cost##.

Than ##x_T=\frac{\int x\left | \dot{\vec{r}}(t) \right |}{\int \left | \dot{\vec{r}}(t) \right |}## can be written as

##x_T=\frac{\int_{0}^{\frac{\pi }{2}} 3a^2\cos^4t\sint}{\int_{0}^{\frac{\pi }{2}} 3a\cost\sint}=\frac{2}{5}a##

or... is that parameterization wrong?

Looks fine to me.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top