- 1,001
- 11
Not homework, just having fun. Every reference I find illustrates the chain rule for composite functions of two variables in this way:
<br /> \begin{align*}<br /> B &= f(x,y) \\<br /> x &= g(w,z) \\<br /> y &= h(w,z) \\<br /> \frac{\partial B}{\partial w} &= \left( \frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial w} \right ) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial w}\right) \\<br /> \frac{\partial B}{\partial z} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial z}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right)<br /> \end{align*}<br />
But, my situation is:
<br /> \begin{align*}<br /> B &= f(x,y) \\<br /> y &= g(x,z)<br /> \end{align*}<br />
Is the following correct (since x is an independent variable)?
<br /> \begin{align*}<br /> \frac{\partial B}{\partial x} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial x}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\<br /> &= \left(\frac{\partial B}{\partial x} \cdot 1\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\<br /> &= \left(\frac{\partial B}{\partial x}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\ \\<br /> \frac{\partial B}{\partial z} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial z}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right) \\<br /> &= \left(\frac{\partial B}{\partial x} \cdot 0\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right) \\<br /> &= \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right)<br /> \end{align*}<br />
Looks kind of goofy, but seems to work using the following example:
<br /> \begin{align*}<br /> B &= x^2y + xy \\<br /> y &= x^3z<br /> \end{align*}<br />
<br /> \begin{align*}<br /> B &= f(x,y) \\<br /> x &= g(w,z) \\<br /> y &= h(w,z) \\<br /> \frac{\partial B}{\partial w} &= \left( \frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial w} \right ) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial w}\right) \\<br /> \frac{\partial B}{\partial z} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial z}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right)<br /> \end{align*}<br />
But, my situation is:
<br /> \begin{align*}<br /> B &= f(x,y) \\<br /> y &= g(x,z)<br /> \end{align*}<br />
Is the following correct (since x is an independent variable)?
<br /> \begin{align*}<br /> \frac{\partial B}{\partial x} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial x}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\<br /> &= \left(\frac{\partial B}{\partial x} \cdot 1\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\<br /> &= \left(\frac{\partial B}{\partial x}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial x}\right) \\ \\<br /> \frac{\partial B}{\partial z} &= \left(\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial z}\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right) \\<br /> &= \left(\frac{\partial B}{\partial x} \cdot 0\right) + \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right) \\<br /> &= \left(\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial z}\right)<br /> \end{align*}<br />
Looks kind of goofy, but seems to work using the following example:
<br /> \begin{align*}<br /> B &= x^2y + xy \\<br /> y &= x^3z<br /> \end{align*}<br />
Last edited: