How is the error in the expanded equation (9) identified and resolved?

  • Thread starter Thread starter Forhad3097
  • Start date Start date
Forhad3097
Messages
3
Reaction score
0
In this articlehttp://arxiv.org/abs/0802.3525, the authors present the inhomogeneous equation

$$\ddot{\phi}_2 + \phi_2 + g_2\phi_1^2 + \omega_1\ddot{\phi}_1 = 0\tag{11}$$

followed by its solution

$$\phi_2 = p_2\cos(\tau + \alpha) + q_2\sin(\tau + \alpha) + \frac{g_2}{6}p_1^2[\cos(2\tau + 2\alpha) - 3] + \frac{\omega_1}{4}p_1[2\tau\sin(\tau + \alpha) + \cos(\tau + \alpha)]\tag{14}$$

How is this solution obtained?
 
Physics news on Phys.org
You left out a crucial part of the solution: φ1 = p1 cos(τ + α). Plug that into the equation and you have a driven harmonic oscillator, solved in any calc book.
 
Find out the error please

I have expanded the equation(9) from the paper http://arxiv.org/abs/0802.3525 . $$-[1+\epsilon \omega_1+ \epsilon^2 \omega_2+\epsilon^3 \omega_4...][\epsilon \ddot\phi_1+\epsilon^2 \ddot\phi_2+\epsilon^3 \ddot\phi_3...]+\epsilon^2[\epsilon \Delta\phi_1 + \epsilon^2 \Delta\phi_2+\epsilon^3 \Delta\phi_3...]=\epsilon \phi_1+\epsilon^2 \phi_2+\epsilon^3 \phi_3...+[g_2 \phi^2 + g_3 \phi^3...]$$
From this equation We can write equation (10), (11) and (12) and so on. but equation (12) is not matching with the expanding equation I did. I think problem in expanding with $$[g_2 \phi^2 + g_3 \phi^3...]$$.
can you please have a look, that where is the problem?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top