How is the Rotational Velocity of Galaxies Measured?

AI Thread Summary
Rotational velocity of galaxies is measured primarily through Doppler shifts in the light spectra of stars near the galactic plane, indicating their movement towards or away from Earth. Despite galaxies often appearing as single dots in telescopes, they can be resolved enough to identify structures like spiral arms. The angular resolution of telescopes allows astronomers to distinguish galaxies, which are much larger than individual stars, even at great distances. Spectroscopy can reveal rotation through the spread of emission and absorption lines, providing insights even when galaxies are unresolved. Accurate measurements depend on the resolution of the instruments and the angle of observation relative to the galaxy's rotation axis.
ChrisVer
Science Advisor
Messages
3,372
Reaction score
465
I was wondering, how can we measure the rotational velocity of a galaxy?
In practice knowing the mass distributions and so on, we could calculate it by classical mechanics (or maybe GR). However people measured the rotational velocity of the galaxies and found that it doesn't correspond to the expected curve (DM or MOND). How did they do it? In a telescope I have the feeling that a galaxy appears as a single dot -1 dimensional object (impossible to see whether it's rotating or not).
 
Astronomy news on Phys.org
Doppler measurements relating red/blue shift of stars moving near the galactic plane. Naturally, your instrument must have enough resolution to perform such measurements.
 
  • Like
Likes ChrisVer
The answer is given by Orodruin, but I want to amend something to it. In fact our telescopes (the ones that astronomers use) are of sufficient resolution such that quite many galaxies will actually be resolved. Have you seen the pictures by HST? Many of those show explicitly that we can see spiral galaxies, or others etc.

I think you are thinking of stars when you think that a galaxy will simply appear as a dot. It is far harder to resolve a star in our own galaxy than it is to resolve a nearby-ish galaxy. We can look at the angular resolutions needed. Let's take a typical star like our Sun and put it at the distance to our nearest neighbor star, Alpha Centauri, which we will just say is 4 light years. The angle subtended by this star is roughly (in radians) ##\theta\approx R_{sun}/(4 ly)\approx2\times 10^{-8}## this is ~.002 arc seconds. A typical (non-dwarf) galaxy is ~100,000 light years across, and let's place it at a distance of perhaps 100 million light years (this is ~10 times farther out than our local group). This gives an angle subtended of ##\theta\approx 100000ly/100000000ly\approx 10^{-3}## which is ~4 arc minutes.

As you can see, it is FAR easier to resolve a nearby galaxy than it is to resolve a nearby star.

In addition, even if the object appears at a dot (unresolved), we can STILL figure out something about its rotation by the spread of the emission/absorption lines that we see in the spectra. Because part of the object will be going towards you, and part of the object will be going away from you, this will produce a spread in the usually quite sharp emission and absorption lines. So, by using spectroscopy, we can in fact figure out rotation of an object, even if we can not resolve that object. We do this quite often for stars actually.

Of course, this will depend on the angle at which we are viewing these objects! So if you are unable to resolve the object to confirm that you are looking at it perpendicular to the axis of rotation, you can only use this as a lower bound on the rotation rate.
 
  • Like
Likes Damo ET and ChrisVer
Orodruin said:
Doppler measurements relating red/blue shift of stars moving near the galactic plane. Naturally, your instrument must have enough resolution to perform such measurements.
Yes, this. I've actually done it before with radio telescopes. My team collected Doppler shifts from neutral hydrogen clouds from a section of the galactic plane, calculated distances and orbital speeds, and plotted those. Fascinating stuff.
 
Publication: Redox-driven mineral and organic associations in Jezero Crater, Mars Article: NASA Says Mars Rover Discovered Potential Biosignature Last Year Press conference The ~100 authors don't find a good way this could have formed without life, but also can't rule it out. Now that they have shared their findings with the larger community someone else might find an explanation - or maybe it was actually made by life.
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Back
Top