How is This Laplace Transform Rewritten for a Final Step?

  • Thread starter Thread starter myusernameis
  • Start date Start date
myusernameis
Messages
56
Reaction score
0

Homework Statement



this is the last step to a laplace transform, but I'm stuck..
\frac{(3-2x)}{((s+3)<sup>2</sup>)+4}
to
-2\frac{(s+3)}{(((s+3)<sup>2</sup>)+4)}9/2 \frac{2}{((s+3)<sup>2</sup>)+4}


thanks
 
Last edited:
Physics news on Phys.org
Hi myusernameis! :smile:

(use ^ not SUP in LaTeX :wink:)

\frac{(3-2s)}{((s+3)^2)+4}

= \frac{(9 - 6 - 2s)}{((s+3)^2)+4}

= -2\frac{(s+3)}{(((s+3)^2+4)} + 9/2 \frac{2}{((s+3)^2)+4} :wink:
 
tiny-tim said:
Hi myusernameis! :smile:

(use ^ not SUP in LaTeX :wink:)

haha i used ^ but the laTeX gave me SUP..

thanks a bunch!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top