pc2-brazil
- 198
- 3
Homework Statement
Show that the function U(x) defined by
U(x)=\begin{cases}<br /> 0 & \text{ if } x<0 \\ <br /> 1 & \text{ if } x\geq0 <br /> \end{cases}
has not an antiderivative in (-∞, +∞).
(Suggestion: Assume U has an antiderivative F in (-∞, +∞) and obtain a contradiction, showing that this contradiction follows from the mean value theorem, according to which there is a number K such that F(x) = x + K if x > 0, and F(x) = K if x < 0).
2. The attempt at a solution
I guess that, if there is an antiderivative for this function, it would have to be some constant C1 for x < 0, and x + C2 for x ≥ 0.
If there is a function F(x) whose derivative is U(x) in (-∞, +∞), then F(x) must be differentiable at all points. So, at any particular value of x, the one-sided derivative coming from the left must be equal to the one-sided derivative coming from the right. But, at x = 0, the one-sided derivatives of F(x) are, from the definition of U(x), 0 (coming from the left) and 1 (coming from the right). The derivative of F(x) doesn't exist at x = 0, so U(x) can't be the derivative of F(x).
I'm not sure whether this is correct, but I didn't use the suggestion. I don't know exactly what this suggestion is asking me to do.
Thank you in advance.