How Many Valid Orderings Avoid Neighboring Duplicates in Mappings from N to M?

  • Thread starter Thread starter madness
  • Start date Start date
  • Tags Tags
    Combinatorics
madness
Messages
813
Reaction score
69
Hi all,

I've come across an interesting problem that I'm unsure how to solve. Let say we have N numbers {1, 2, ... N}. Each number in this list is mapped to one number in {1,..,M} where M < N.

What are the possible ways I can list the first set, such that the numbers of the second set which they are mapped onto never repeat as neighbours.

For example, I can reorder the first set as {5, 3, 10, ..., N, ..., 1}. Writing this out in terms of the second set which each of these numbers is mapped onto, it might look something like {7, 2, 2, ..., 3, ..., 5}.

In the above example, the {.., 2, 2, ...} part is an example of two numbers repeating as neighbours. But how can I figure out how many orderings there are which don't do this?

Now, if that is not difficult enough, I have some more difficult questions. What if I require that the two numbers can't repeat within some distance D of each other. For example, {...,2,1,2,...} if D=2 or {...2,1,3,2,...} if D=3.

Finally, what if we don't have to order the whole list {1,...,N} in this way, but are allowed to pick any subset of P elements (where P is a fixed number). Can I then calculate how many possible lists there are?

I'm willing to work through this with anyone who will help me, but for now I have no idea where to start.

Thanks!
 
Mathematics news on Phys.org
This may not be helpful but have you tried using concrete examples like N=2 and M=3 then bumping it up to N=3 and M=4 or 5...

Perhaps you'll see a pattern that you can exploit.
 
I figured out how to solve it, but thanks anyway!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
9
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
Replies
7
Views
3K
Back
Top