I How Peskin & Schroeder simplified this horrible product of bilinears?

hamad12a
Messages
4
Reaction score
0
TL;DR Summary
I couldn't understand how to pass from sigma to sigma bar Pauli matrices.
P&S had calculated this expression almost explicitly, except that I didn't find a way to exchange the $$\nu \lambda$$ indices, but I'm sure the below identity is used,

$$
\begin{aligned}\left(\overline{u}_{1 L} \overline{\sigma}^{\mu} \sigma^{\nu} \overline{\sigma}^{\lambda} u_{2 L}\right)\left(\overline{u}_{3 L} \overline{\sigma}_{\mu} \sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right) &=2 \epsilon_{\alpha \gamma} \overline{u}_{1 L \alpha} \overline{u}_{3 L \gamma} \epsilon_{\beta \delta}\left(\sigma^{\nu} \overline{\sigma}^{\lambda} u_{2 L}\right)_{\beta}\left(\sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right)_{\delta} \\ &=2 \epsilon_{\alpha \gamma} \overline{u}_{1 L \alpha} \overline{u}_{3 L \gamma} \epsilon_{\beta \delta} u_{2 L \beta}\left(\sigma^{\lambda} \overline{\sigma}^{\nu} \sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right)_{\delta} \end{aligned}
$$

The identity is,

$$
\epsilon_{\alpha \beta}\left(\sigma^{\mu}\right)_{\beta \gamma}=\left(\overline{\sigma}^{\mu T}\right)_{\alpha \beta} \epsilon_{\beta \gamma}
$$
 
Physics news on Phys.org
When asking questions of this kind, you'd get more help more quickly if you state the precise page number(s) and equation number(s), instead of expecting potential helpers to trawl through the book trying to find it.
 
  • Like
Likes vanhees71 and Demystifier
strangerep said:
When asking questions of this kind, you'd get more help more quickly if you state the precise page number(s) and equation number(s), instead of expecting potential helpers to trawl through the book trying to find it.
it's on page 51, Peskin & Schroeder's book.
 
Hey good question. This comes down to a few basic observations about sigma matrices.
First of all, we note
$$
(i\sigma ^2)_{\alpha\beta} = \epsilon_{\alpha\beta}.
$$
Next we rephrase the statement of the problem in a slightly more illuminating form:
$$
(i\sigma^2 \sigma^{\mu})_{\alpha\beta}= ((\bar{\sigma^{\mu}})^T)i\sigma^2)_{\alpha\beta}
$$
and of course two matrices are equal if and only if all their entries are equal one by one, so it is easy to see how the indices nomenclature of the statement of the problem follows (note ##\beta## is summed over).
Now, notice from the particular form of the Pauli matrices that they are all symmetric but ##\sigma^2##. This means that only ##\sigma^2## changes sign under transposition.
Moreover, consider the identity
$$
\{\sigma^i, \sigma^j\} = \delta^{ij}
$$.
Thus commuting ##\sigma^2## past all sigmas from the left (or if you wish you can reverse left and right of the identity) - and the identity matrix in the first position - in the four vector ##\sigma^{\mu}##, we obtain the desired identity, since ##\sigma^2## anti-commutes with all components except itself; but the change of sign here is taken care of by the transposition.

I hope this was clear enough.
mdb71.
 
Last edited:
  • Like
Likes vanhees71, atyy and DarMM
@mdb71 the [CODE] BB code tag is for displaying program source code, not for LaTeX. LaTeX only needs to be delimited by $$ for separate equations or ## for inline (these replace the old and delimiters which no longer work).<br /> <br /> I have used magic moderator powers to edit your post accordingly.
 
  • Like
Likes mdb71
Thanks a lot, appreciate. Got it now, I was still getting used to it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top