mnb96
- 711
- 5
Hi,
if we suppose x and y are two elements of some vector space V (say ℝn), and if we consider a linear function f:V→V', we know that the inner product of the transformed vectors is given by: \left\langle f\mathbf{x} , f\mathbf{y} \right\rangle = \left\langle \mathbf{x} , \overline{f}f\mathbf{y} \right\rangle = \left\langle \overline{f}f\mathbf{x} , \mathbf{y} \right\rangle where \overline{f} is the adjoint operator of f.
What can we say about \left\langle f\mathbf{x} , f\mathbf{y} \right\rangle when f is non-linear, for example a diffeomorphism ?
if we suppose x and y are two elements of some vector space V (say ℝn), and if we consider a linear function f:V→V', we know that the inner product of the transformed vectors is given by: \left\langle f\mathbf{x} , f\mathbf{y} \right\rangle = \left\langle \mathbf{x} , \overline{f}f\mathbf{y} \right\rangle = \left\langle \overline{f}f\mathbf{x} , \mathbf{y} \right\rangle where \overline{f} is the adjoint operator of f.
What can we say about \left\langle f\mathbf{x} , f\mathbf{y} \right\rangle when f is non-linear, for example a diffeomorphism ?
Last edited: