nhrock3
- 403
- 0
they said that the solution of
-dn=-\frac{1}{\tau}ndt\\
is
n=n_0e^{-\frac{t}{\tau}}
i got a totaly different answer
-dn=-\frac{1}{\tau}ndt\\
\int -dn=\int -\frac{1}{\tau}ndt\\
\int \frac{-dn}{n}=\int -\frac{1}{\tau}dt\\
-\ln{n}=-\frac{t}{\tau}\\
\ln{n^{-1}}=-\frac{t}{\tau}\\
e^{-\frac{t}{\tau}{={n^{-1}}
-dn=-\frac{1}{\tau}ndt\\
is
n=n_0e^{-\frac{t}{\tau}}
i got a totaly different answer
-dn=-\frac{1}{\tau}ndt\\
\int -dn=\int -\frac{1}{\tau}ndt\\
\int \frac{-dn}{n}=\int -\frac{1}{\tau}dt\\
-\ln{n}=-\frac{t}{\tau}\\
\ln{n^{-1}}=-\frac{t}{\tau}\\
e^{-\frac{t}{\tau}{={n^{-1}}