How to Calculate Eigenvectors of the Unperturbed Hamiltonian?

captainjack2000
Messages
96
Reaction score
0

Homework Statement


The Hamiltonian of a system has the matrix representation

H=Vo*(1-e , 0 , 0
0 , 1 , e
0 , e , 2)

Write down the eigenvalues and eigenvectors of the unperturbed Hamiltonian (e=0)

Homework Equations


when unperturbed the Hamiltonian will reduce to Vo* the 3x3 matrix with 1,1,2 along the diagonal. the eigenvalues are therefore Vo,Vo,2Vo (right??)

I am a bit confused about how to calculate the eigenvectors. I have tried looking this up but still get confused. Would they not all be zero since if you sub the eigenvalue Vo back into matrix you would get for the first row

Vo(1-Vo,0,0) * (x,y,z) = (0,0,0) where (x,y,z) is a vertical matrix?
 
Physics news on Phys.org
What is the problem then? You should know that the 0 vector is the trivial solution, so it is not count for the eigenvector cos it cannot span any solution space.
 
So how would you calculate the other eigenvectors. Sorry I am still confused.
 
for e=0,
H=
(Vo , 0 , 0
0 , Vo , 0
0 , 0 , 2Vo)
eigenvalue is Vo,Vo,2Vo as you said. So what is the standard procedure to find the eigenvector? I assume that you should take at least one linear algebra before you take QM.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top