B How to check if this limit is correct or not?

  • B
  • Thread starter Thread starter Kumar8434
  • Start date Start date
  • Tags Tags
    Limit Limits
Kumar8434
Messages
121
Reaction score
5
I can't prove it and I've got it by some intuition because not many properties of superlogarithms are known. I don't think anyone can prove it but is there some way to at least check if it is correct.
The limit is:
$$\lim_{h\rightarrow0}slog_{[log_xx+h]}[log_{f(x)}f(x+h)]$$
where ##slog## is the super-logarithm.
What I need to check is if this limit equals:
$$log_{log_xf(x)}[\frac{d(f(x))}{dx}\frac{x}{y}]$$
for any function ##f(x)##. It's true when ##f(x)=x^n##. But is there some way to check if it's right or wrong for other functions?
 
Last edited:
Mathematics news on Phys.org
I can't find any option to edit my above post, so I'm adding this here.
I think there's one more possibility of what that limit might evaluate to. It is $$\frac{d(f(x))}{dx}*\frac{x}{y}*\frac{logx}{logy}$$. It's also satisfied by ##f(x)=x^n## but I can't check it for other functions. Please tell me some way to check which of these expressions should be the correct value of the limit or if both of these are wrong.
 
How do you define the super-logarithm for non-integer values?
 
mfb said:
How do you define the super-logarithm for non-integer values?
I could be wrong but isn't the superlogarithm defined for special types of fractional values just like the super-root?
For example, when
$$^nx=y$$ when n is an integer then,
$$x=^{\frac{1}{n}}y$$
So, $$slog_yx=\frac{1}{n}$$
I think that extends its range to an infinite number of fractional values of the form ##\frac{1}{n}## the interval [0,1]. That makes the graph almost continuous in the interval [0,1]. I need to know that if the limit I've evaluated is in agreement with this almost continuous graph.
And if that's not possible, then use some extension of superlogarithm on reals, if they don't give too much different values.
 
Wikipedia discusses two definitions. Looks like there is no obvious single definition around.
 
mfb said:
Wikipedia discusses two definitions. Looks like there is no obvious single definition around.
Then is it correct if the graph of slogx is assumed to be straight line between the points on which it is defined?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top