Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How to contract the christoffel symbol

  1. Jan 23, 2015 #1
    http://www.thephysicsforum.com/vlatex/pics/92_db3a451c7d105432675bef473582556e.png [Broken]

    Anyone can help me? I am really stuck at here.
     
    Last edited by a moderator: May 7, 2017
  2. jcsd
  3. Jan 23, 2015 #2

    strangerep

    User Avatar
    Science Advisor

    Well, you should at least show your work so far, and exactly where you get "stuck". I.e., like in the homework forums.
     
    Last edited by a moderator: May 7, 2017
  4. Jan 23, 2015 #3

    Matterwave

    User Avatar
    Science Advisor
    Gold Member

    You might start with writing out how the Christoffel symbols are defined, and then contracting the two indices to see what you get.
     
  5. Jan 24, 2015 #4
    I get (0.5)(d/dxμ)(gσv)(gσv) . I don't even know to get that ln.

    Sorry for my untidiness as I am still new to this.
     
  6. Jan 24, 2015 #5

    Matterwave

    User Avatar
    Science Advisor
    Gold Member

    If you don't show your intermediate steps, we can't really tell where you went wrong. By the way ##g_{\sigma\nu}g^{\sigma\nu}=\delta_\sigma^{~~\sigma}=n## where ##n## is the dimension of the manifold. So you definitely went wrong somewhere as your expression is the derivative of a constant so will equal 0.
     
  7. Jan 25, 2015 #6
    IMG_20150125_142314-1.jpg
    I did that by cancelling out the indices.
     
  8. Jan 25, 2015 #7

    Matterwave

    User Avatar
    Science Advisor
    Gold Member

    Ok, but your final result ##\Gamma^\sigma_{\sigma\mu}=\frac{1}{2}g^{\sigma\nu}\partial_\mu g_{\sigma\nu}## is very different than the one you wrote in post #4.

    You are pretty close to the answer. Perhaps the easiest way to move forward now is to expand the original statement ##\Gamma^\sigma_{\sigma\mu}=\partial_\mu (\ln\sqrt{g})## out to see what that looks like in terms of components ##g_{\mu\nu}## (it will be pretty hard to reverse-engineer this I think). The easiest way to work out the equation in the OP is to transform to a coordinate system in which the metric is diagonal (which can always be done), work out the derivatives in terms of components of the metric in that coordinate system, and then produce an equation which will work in any coordinate system. :)
     
  9. Jan 27, 2015 #8
    Thanks! I did finally manage to contract it. However, I have difficulty contracting Γσμμ. Is contracting it going to give us the same formula as shown above? I search online but I cant find any contraction of that christoffel symbol given above.
     
  10. Jan 27, 2015 #9

    Matterwave

    User Avatar
    Science Advisor
    Gold Member

    You can't "contract" two indices which are both lower indices. You can only contract one upper index with a lower index. So what you want to look for is actually ##g^{\mu\nu}\Gamma^\rho_{\mu\nu}##. Try writing that out and seeing what it turns out to be.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: How to contract the christoffel symbol
  1. Christoffell symbols (Replies: 6)

  2. Christoffel symbols (Replies: 5)

  3. Christoffel symbols (Replies: 4)

Loading...