How Do You Convert GeV/c to m/s for Particle Velocities?

  • Thread starter Thread starter iamBevan
  • Start date Start date
  • Tags Tags
    Convert
iamBevan
Messages
32
Reaction score
0
As the title said :)

I'm trying to find the velocity of a particle with a momentum of between 23 and 150 GeV/c. I found that 1 GeV/c = 5.36 x 10^-19 kg-m/s, and tried to divide by the mass of the particle - this just game me values between 7m/s and some crazy numbers.

What am I doing wrong :(
 
Physics news on Phys.org
One way is to use the relation
E^2=\left(mc^2 \right)^2+\left(pc \right)^2
where pc is 23 to 150 GeV (momentum in energy units), and mc^2 is the particle's rest mass (proton is 0.938 GeV). Then use \beta =pc/E to get \beta, and v=\beta c.
 
Last edited:
Thank you for your help Bob S - I still can't manage to get the answer though.

When I set m to 5.5208x10^27kg, and p to 25GeV/c I end up getting a value that is faster than c when I solve for v. Can anyone help with this?
 
If 1 GeV/c = 5.36 x 10-19 kg-m/s though, why can't I do 25(5.36x10^-19)/particle's mass?
 
Using the relation
E^2=\left(mc^2 \right)^2+\left(pc \right)^2
where pc= 50 GeV and mc^2= 0.938 GeV, E = 50.008798 GeV.
So β= 50/ 50.008798= 0.99982 and βc = 2.9974 x 1010 cm/sec
 
iamBevan said:
If 1 GeV/c = 5.36 x 10-19 kg-m/s though, why can't I do 25(5.36x10^-19)/particle's mass?

Because p ≠ mv, if you're using the particle's "rest mass" in kg. The correct equation is

$$p = \frac{mv}{\sqrt{1 - v^2/c^2}}$$
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top