I How to define expectation value in relativistic quantum mechanics?

Foracle
Messages
29
Reaction score
8
TL;DR Summary
How to define expectation value in relativistic quantum mechanics?
In non relativistic quantum mechanics, the expectation value of an operator ##\hat{O}## in state ##\psi## is defined as $$<\psi |\hat{O}|\psi>=\int\psi^* \hat{O} \psi dx$$.
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?
 
Physics news on Phys.org
Go to the momentum space (via Fourier transform) and then define scalar product, probability and expectation value as in "ordinary" QM.
 
Foracle said:
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?
$$\langle \hat O\rangle=i\int\left(\psi^*\hat O\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\hat O\psi\right)dx.$$
works if ##O## does not depend on ##x##. In general,
$$\langle \hat O(x)\rangle=i\int\left(\psi^*\frac{\partial \hat O(x)\psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\hat O(x)\psi\right)dx.$$
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top