How to Derive Lagrange's Equations for a Double Pendulum?

yukawa
Messages
10
Reaction score
0
Lagrange equation of motion



(from Marion 7-7)

A double pendulum consists of two simpe pendula, with one pendulum suspended from the bob of the other. If the two pendula have equal lenghts and have bobs of equal mass and if both pendula are confirned to move in the same plane, find Lagrange's equation of motion for the system. Do not assume small angles.

Which generalized coordinates should it choose? And how to made use of the constrains?
 
Physics news on Phys.org
Make a picture. You can see that the 2 angles formed with the vertical are the 2 needed generalized coordinates.
 
but are these two angles independent of each other? (in fact, i don't know how to determine whether two coordinates are independent of each other or not)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top