How to Derive Lagrange's Equations for a Double Pendulum?

yukawa
Messages
10
Reaction score
0
Lagrange equation of motion



(from Marion 7-7)

A double pendulum consists of two simpe pendula, with one pendulum suspended from the bob of the other. If the two pendula have equal lenghts and have bobs of equal mass and if both pendula are confirned to move in the same plane, find Lagrange's equation of motion for the system. Do not assume small angles.

Which generalized coordinates should it choose? And how to made use of the constrains?
 
Physics news on Phys.org
Make a picture. You can see that the 2 angles formed with the vertical are the 2 needed generalized coordinates.
 
but are these two angles independent of each other? (in fact, i don't know how to determine whether two coordinates are independent of each other or not)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top