How to Derive Psi(x,t) from Psi(x,0) in Quantum Mechanics?

  • Thread starter Thread starter neo2478
  • Start date Start date
neo2478
Messages
8
Reaction score
0
Hey guys, first time poster.

I am doing some quantum physics homework, and I came across the following problem:

A particle in an infinite square well has the initial wave function
Psi(x,0) = Ax 0?x?a/2
A(a-x) a/2 ?x?a

Find Psi (x,t)

Now after normalizing it, I tried plugging it in Schrödinger's equation, however I'm still having problems.

Thanks in advance, Rob.
 
Physics news on Phys.org
Psi(x,t)=Sum exp{-iE_n hbar t}phi_n(x)<phi_n|Psi(x,0)>,
where phi_n are the estates and E_n the eignevalues of the square well.
 
Why did you do the summation of the function instead of integrating it??
 
neo2478 said:
Why did you do the summation of the function instead of integrating it??

The energies are discrete, hence the summation.

You must write
\Psi(x,t=0) = \sum_n c_n \psi_n(x)
where the \psi_n(x) are the energy eigenstates, \sqrt{2/a} \, sin(n \pi x/a) (for a well located between x=0 and x=a). What you have to do is to find the coefficients c_n using the orthonormality of the sine wavefunctions. Once you have that, the wavefunction at any time is

\Psi(x,t) = \sum_n c_n e^{-i E_n t / \hbar} \psi_n(x)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top