I How to ensure an equation is dimensionless when it includes "Debye"

AI Thread Summary
To determine if an expression is dimensionless, it is essential to analyze the units involved, particularly when dealing with the Debye term. The Debye unit, related to the electric dipole moment, can be expressed in terms of cgs units, where 1 Debye equals 1 Franklin times cm. By breaking down the units, the expression (Debye^2)(s^2)/(cm^5)(g) simplifies to a dimensionless form, confirming correctness. The calculation shows that the units cancel out to yield a value of 1, indicating the expression is indeed dimensionless. Understanding these unit conversions is crucial for verifying dimensional analysis in equations.
bumblebee77
Messages
56
Reaction score
2
TL;DR Summary
Can anyone please help me figure out how to break down "Debye" into base units so that I can check if an expression is dimensionless in the CGS system?
I am trying to check if an expression is dimensionless. If it is, then I have done things correctly. However, I am stuck on how to deal with a (Debye^2) term. How can I break it down to find out if it cancels out with the other units I have left? I know this is probably a trivial question, but just cannot figure it out.

I have this ("^2" means "squared"):

(Debye^2) (s^2) / (cm^5) g
 
Physics news on Phys.org
An expression is of course dimensionless in any system of units. It's the cgs-unit for the electric dipole moment having the dimension Franklin times cm. Now ##1 \text{Fr} =1 \text{statC}=1 \sqrt{\text{g} \; \text{cm}^3/\text{s}^2}##. So ##\text{Debye}^2 \text{s}^2/(\text{cm}^5 \text{g})=1 \text{g} \; \text{cm}^5/(\text{cm}^5 \; \text{g})=1## 👍
 
  • Love
Likes bumblebee77
vanhees71 said:
An expression is of course dimensionless in any system of units. It's the cgs-unit for the electric dipole moment having the dimension Franklin times cm. Now ##1 \text{Fr} =1 \text{statC}=1 \sqrt{\text{g} \; \text{cm}^3/\text{s}^2}##. So ##\text{Debye}^2 \text{s}^2/(\text{cm}^5 \text{g})=1 \text{g} \; \text{cm}^5/(\text{cm}^5 \; \text{g})=1## 👍
@vanhees71, thank you so much. I just could not get my head around this. Really appreciate it. I voted you up and if there's any other way I can give you credit, just let me know.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top