How to Evaluate an Integral of a Vector Field along a Curve?

  • Thread starter Thread starter iScience
  • Start date Start date
  • Tags Tags
    Integral
iScience
Messages
466
Reaction score
5
if i have a function U..

U=∫F∙ds

where F=<ayz+bx+c , axz+bz , axy+by> , a,b,c are constants

so.. F=(ayz+bx+c)\hat{x} + (axz+bz)\hat{y} + (axy+by)\hat{z}

then how do i solve this integral? i have to either replace the x,y,z terms with something in terms of 's' (which is the displacement by the way, ie.. s= \sqrt{x^2+y^2+z^2}
or i have to replace ds with some parametric ..stuff... how do i evaluate something like this?
 
Last edited:
Physics news on Phys.org
Hi iScience! :smile:
iScience said:
U=∫F∙ds

or i have to replace ds with some parametric ..stuff... how do i evaluate something like this?

Let's write that out in full …

it's an integral over a curve C between two endpoints P1 and P2: ##U = \int_C \mathbf{F}\cdot d\mathbf{s}##

so yes you have to use some parameter, which may be s itself, or may be something easier to use, eg θ with ds = (-rsinθdθ,rcosθdθ) :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top