How to Expand Noncommuting Variables in a Formal Power Series?

fuchini
Messages
11
Reaction score
0

Homework Statement


Need to show that [a,f(a,a^\dagger]=\frac{\partial f}{\partial a^\dagger}

Homework Equations


[a,a^\dagger]=1

The Attempt at a Solution


Need to expand f(a,a^\dagger) in a formal power series. However I don´t know how to do it if the variables don´t commute.
 
Last edited:
Physics news on Phys.org
##f(a,a^+)= b_0+ b_1 a+b_2 a^+ b_3 a^2 +b_4 aa^+ +b_5 a^+a+b_6 (a^+)^2+\ldots##
So the general term is some product of a and ##a^+## in arbitrary order.
 
Thanks for answering, but how would it be in terms of derivatives? Normally It would be:

f=\sum_{m,n} \frac{a^m a^{\dagger m}}{n!m!}\frac{\partial^{n+m} f}{\partial a^n \partial a^{\dagger m}}

But in this case I guess I have to take into account that they're noncommuting.
 
Start with a simpler case, i.e., ##f = (a^\dagger)^n## only. Use induction (on ##n##) to show that the desired formula holds. Once you understand the induction method for this problem, you'll probably work it out for more general ##f## more easily.
 
Thanks, that did the trick!
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top