MHB How to find a non-zero vector in the column space of M

shamieh
Messages
538
Reaction score
0
Let the matrix $M = \begin{bmatrix}-12&-12&16&-15\\-6&-8&-8&-10\\0&20&0&25\end{bmatrix}$

Find a non zero vector in the column space of $M$

Is it not true that $\begin{bmatrix}-12\\-8\\20\end{bmatrix}$ is a non zero vector in the column space of $M$ ? For some reason it keeps telling me "that is incorrect your answer doesn't seem to be a Vector"
 
Physics news on Phys.org
shamieh said:
Let the matrix $M = \begin{bmatrix}-12&-12&16&-15\\-6&-8&-8&-10\\0&20&0&25\end{bmatrix}$

Find a non zero vector in the column space of $M$

Is it not true that $\begin{bmatrix}-12\\-8\\20\end{bmatrix}$ is a non zero vector in the column space of $M$ ? For some reason it keeps telling me "that is incorrect your answer doesn't seem to be a Vector"

Hi shameih,

It is true that $\begin{bmatrix}-12\\-8\\20\end{bmatrix}$ is a non-zero vector that is in the column space of $M$. I see nothing wrong with your answer. Is it possible that the way you inserted it into the computer might be incorrect?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads