How to Find Eigenstates for Value 0 in Projection on Coherent States Paper?

Heidi
Messages
420
Reaction score
40
Homework Statement
this is about coherent states
Relevant Equations
|z><z| = :exp(a-z)^\dagger (a-z):
i am reading this paper . in the definition 19 we have
|z><z| = :exp(a-z)^\dagger (a-z):
in the extansion the first term is the identity son it is not hart to find an eigenvector for the value 1. it is ok if the vector is annihilated by a. if is the case for the coherent grouns state. how to find an eigenstate for the value 0 ?
 
Physics news on Phys.org
It would be simpler to begin with z = 0>
 
I made a typo. The definition is not $ |z><z| = :exp(a-z)^\dagger (a-z): $
it is

$ |z \rangle \langle z| = :exp-(a-z)^\dagger (a-z):$
$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top