How to find the function for which ∫ √x*√(1+y'^2) dx is stationary?

  • Thread starter Thread starter nafizamin
  • Start date Start date
  • Tags Tags
    Dx Function
nafizamin
Messages
5
Reaction score
0
This was originally posted in a non-homework forum and does not use the template.
this is an euler lagrange equation problem from the book- "classical mechanics-John R. Taylor", problem-6.11

find the path function for which ∫ √x*√(1+y'^2) dx is stationary.

the answer is- x= C+(y-D)^2/4C, the equation of a parabola.

here the euler lagrange equation will work on f=√x*√(1+y'^2).

since ∂f/∂y= 0, so ∂f/∂y'= const

→ √x*y'/ √(1+y'^2)= constant.

then i don't get how i get from here to the equation of the parabola.

any help?
 
Physics news on Phys.org
Square both sides of the equation, then do algebra till you get ##y'## on one side, and ##x## on the other. Integrate.
 
well, squaring gives me- x*y'^2=C(1+y'^2). i could separate to get x=C(1+y'^2)/y'^2

how do i integrate the terms involving y'^2 ?
 
You have not simplified it enough. You can transform that to an equation that does not involve fractions.
 
Does anyone know why the problem asks for y=y(x) but the solution is in the form x=x(y)?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top