- #1
Lujz_br
- 4
- 0
Homework Statement
Hello, I solved others but not 6.9:
Find the equation of the path joining the origin O to point P(1,1) in the xy plane that makes the integral ∫(y'2 +yy' + y2) dx stationary.
∫ from O to P. y' = dy/dx
Homework Equations
I need use ∂f/∂y = d/dx (∂f/∂y') (euler-lagrange equation) with f = y'2 +yy' + y2
∂f/∂y = y' + 2y
∂f/∂y' = 2y' + y
and d/dx (∂f/∂y') = 2 y'' + y', go to euler-lagrange equation we get:
y' + 2y = 2 y'' + y'
this is equivalent to:
y'' = y (eq 1)
y = ex is solution of eq. 1, but it don't fit (0,0) and (1,1)
I see the solution at final of the book: y = senh(x)/senh(1)
Ok, is solution of eq. 1 and fit points (0,0) and (1,1).
There are any thing more? I feel I don't get good answer without look at the final of the book.
Thanks! Luiz